We describe and empirically evaluate machine learning methods for the prediction of zinc binding sites from protein sequences. We start by observing that a data set consisting of single residues as examples is affected by autocorrelation and we propose an ad-hoc remedy in which sequentially close pairs of candidate residues are classified as being jointly involved in the coordination of a zinc ion. We develop a kernel for this particular type of data that can handle variable length gaps between candidate coordinating residues. Our empirical evaluation on a data set of non redundant protein chains shows that explicit modeling the correlation between residues close in sequence allows us to gain a significant improvement in the prediction performance. © Springer-Verlag Berlin Heidelberg 2006.

Improving prediction of zinc binding sites by modeling the linkage between residues close in sequence

Passerini, Andrea;
2006-01-01

Abstract

We describe and empirically evaluate machine learning methods for the prediction of zinc binding sites from protein sequences. We start by observing that a data set consisting of single residues as examples is affected by autocorrelation and we propose an ad-hoc remedy in which sequentially close pairs of candidate residues are classified as being jointly involved in the coordination of a zinc ion. We develop a kernel for this particular type of data that can handle variable length gaps between candidate coordinating residues. Our empirical evaluation on a data set of non redundant protein chains shows that explicit modeling the correlation between residues close in sequence allows us to gain a significant improvement in the prediction performance. © Springer-Verlag Berlin Heidelberg 2006.
2006
Proceedings of the 10th Annual International Conference on Research in Computational Molecular Biology
HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
Springer
9783540332954
S., Menchetti; Passerini, Andrea; P., Frasconi; C., Andreini; A., Rosato
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/60888
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact