In this paper, an approach based on the Bayes rule for minimum cost for feature selection and classification of remote-sensing images is proposed. This approach allows one to achieve land-cover maps in which the total cost involved by errors, instead of the total classification error, is minimized. Experiments carried out on a multisource data set of the Island of Elba (Italy) point out the effectiveness of the proposed minimum cost approach.

Classification of remote-sensing images by using the Bayes rule for minimum cost

Bruzzone, Lorenzo
1998-01-01

Abstract

In this paper, an approach based on the Bayes rule for minimum cost for feature selection and classification of remote-sensing images is proposed. This approach allows one to achieve land-cover maps in which the total cost involved by errors, instead of the total classification error, is minimized. Experiments carried out on a multisource data set of the Island of Elba (Italy) point out the effectiveness of the proposed minimum cost approach.
1998
Proceedings of the IEEE 1998 Int. Geoscience and Remote Sensing Symposium
Stati Uniti d'America
IEEE
Bruzzone, Lorenzo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/59055
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact