We propose a system for a regular updating of land-cover maps based on the use of temporal series of remote sensing images. Such a system is composed of an ensemble of partially unsupervised classifiers integrated in a multiple classifier architecture. The updating problem is formulated under the complex constraint that for some images of the considered multitemporal series no ground-truth information is available. With respect to the authors’ previous works on this topic [1-3], the novel contribution of this paper consists in: i) developing partially unsupervised classification algorithms defined in the framework of a cascade-classifier approach; ii) defining a specific strategy for the generation of an ensemble of classifiers, which exploits the peculiarities of the cascade-classifier approach. These novel aspects result in the definition of more robust and accurate classification systems.

A robust multiple classifier system for a partially unsupervised updating of land-cover maps

Bruzzone, Lorenzo;
2001-01-01

Abstract

We propose a system for a regular updating of land-cover maps based on the use of temporal series of remote sensing images. Such a system is composed of an ensemble of partially unsupervised classifiers integrated in a multiple classifier architecture. The updating problem is formulated under the complex constraint that for some images of the considered multitemporal series no ground-truth information is available. With respect to the authors’ previous works on this topic [1-3], the novel contribution of this paper consists in: i) developing partially unsupervised classification algorithms defined in the framework of a cascade-classifier approach; ii) defining a specific strategy for the generation of an ensemble of classifiers, which exploits the peculiarities of the cascade-classifier approach. These novel aspects result in the definition of more robust and accurate classification systems.
2001
Proc. second International workshop on multiple classifier systems
Berlino
Springer
9783540422846
Bruzzone, Lorenzo; R., Cossu
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/55238
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact