In this paper, the results of an experimental investigation of the use of textural features computed from the Gray-Level Co-occurrence matrix for Synthetic Aperture Radar (SAR) image classification are reported and discussed. The investigation, carried out on SAR images acquired with the SIR-C/X-SAR sensor in an Italian agricultural area, makes it possible to derive interesting information about the computation modalities and the effectiveness of the above textural features.

Effects of parameter tuning and de-speckle filtering on the accuracy of SAR image classification based on gray-level co-occurrence matrix features

Bruzzone, Lorenzo;
1997-01-01

Abstract

In this paper, the results of an experimental investigation of the use of textural features computed from the Gray-Level Co-occurrence matrix for Synthetic Aperture Radar (SAR) image classification are reported and discussed. The investigation, carried out on SAR images acquired with the SIR-C/X-SAR sensor in an Italian agricultural area, makes it possible to derive interesting information about the computation modalities and the effectiveness of the above textural features.
1997
Proceedings of the IEEE 1997 Int. Geoscience and Remote Sensing Symposium
Stati Uniti d'America
IEEE
Bruzzone, Lorenzo; S. B., Serpico; G., Vernazza
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/48579
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact