In this paper, we present an approach to the extraction and selection of robust features for classification of multispectral remote-sensing images. In particular, several robust features are proposed that, given a specific land-cover class, aim to exhibit an invariant behavior versus variations in the acquisition conditions of the images considered. In addition, a technique is presented, which is able to adaptively select the most robust features for a given problem.

Extraction and selection of robust features for classification of multispectral remote-sensing images

Bruzzone, Lorenzo;
1999-01-01

Abstract

In this paper, we present an approach to the extraction and selection of robust features for classification of multispectral remote-sensing images. In particular, several robust features are proposed that, given a specific land-cover class, aim to exhibit an invariant behavior versus variations in the acquisition conditions of the images considered. In addition, a technique is presented, which is able to adaptively select the most robust features for a given problem.
1999
IEEE International Geoscience and Remote Sensing Symposium IEEE 1999 International Geoscience and Remote Sensing Symposium Proc. IEEE International Geoscience and Remote Sensing Symposium 1999
Stati Uniti d'America
IEEE
Bruzzone, Lorenzo; D., Fernandez Prieto; G., Silvano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/47651
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact