Plant Microbial Fuel Cells (PMFCs) are at the forefront of green energy production, yet their interaction with the environment is still unclear. On-field monitoring poses a great opportunity to learn more about the in-place behavior of these energy sources, but also presents significant technical challenges if the monitoring is to be executed on PMFC power alone. We present a self-powered, ultra-low power monitoring system that aims to improve the collection of useful information for PMFC research away from mains. We explore the possibilities of simultaneous sensing and energy harvesting by executing converter-driven I/V scanning. We also propose method for integrating intermittent harvesting into the energy conditioning of PMFCs, leading to improved power and energy levels. By supplying the application with our novel autonomous dynamic capacitor bank (CapDYN), we improve the energy utilization efficiency by 93.7% with respect to a fixed capacitor storage, consequentially doubling the throughput of the application tasks. Moreover, CapDYN speeds up the execution of tasks of between 56% and 96% when charging from an empty storage, greatly improving system reactivity and cold start.

Self-Powered Plant Microbial Fuel Cell Monitoring Node with Autonomous Dynamic Capacitance / Doglioni, Maria; Casas, Oscar; Nardello, Matteo; Brunelli, Davide. - (2025), pp. 179-184. ( 8th IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd4.0 and IoT 2025 Castelldefels, Spain 1-3 July 2025) [10.1109/metroind4.0iot66048.2025.11122107].

Self-Powered Plant Microbial Fuel Cell Monitoring Node with Autonomous Dynamic Capacitance

Doglioni, Maria
;
Nardello, Matteo;Brunelli, Davide
2025-01-01

Abstract

Plant Microbial Fuel Cells (PMFCs) are at the forefront of green energy production, yet their interaction with the environment is still unclear. On-field monitoring poses a great opportunity to learn more about the in-place behavior of these energy sources, but also presents significant technical challenges if the monitoring is to be executed on PMFC power alone. We present a self-powered, ultra-low power monitoring system that aims to improve the collection of useful information for PMFC research away from mains. We explore the possibilities of simultaneous sensing and energy harvesting by executing converter-driven I/V scanning. We also propose method for integrating intermittent harvesting into the energy conditioning of PMFCs, leading to improved power and energy levels. By supplying the application with our novel autonomous dynamic capacitor bank (CapDYN), we improve the energy utilization efficiency by 93.7% with respect to a fixed capacitor storage, consequentially doubling the throughput of the application tasks. Moreover, CapDYN speeds up the execution of tasks of between 56% and 96% when charging from an empty storage, greatly improving system reactivity and cold start.
2025
2025 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd4.0 and IoT 2025 - Proceedings
Piscataway, NJ, USA
Institute of Electrical and Electronics Engineers Inc.
978-1-6654-5774-3
Settore ING-INF/01 - Elettronica
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
Settore IINF-01/A - Elettronica
Settore IINF-05/A - Sistemi di elaborazione delle informazioni
Doglioni, Maria; Casas, Oscar; Nardello, Matteo; Brunelli, Davide
Self-Powered Plant Microbial Fuel Cell Monitoring Node with Autonomous Dynamic Capacitance / Doglioni, Maria; Casas, Oscar; Nardello, Matteo; Brunelli, Davide. - (2025), pp. 179-184. ( 8th IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd4.0 and IoT 2025 Castelldefels, Spain 1-3 July 2025) [10.1109/metroind4.0iot66048.2025.11122107].
File in questo prodotto:
File Dimensione Formato  
Self-powered_plant_microbial_fuel_cell_monitoring_node_with_autonomous_dynamic_capacitance.pdf

Solo gestori archivio

Descrizione: © 2025 IEEE
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/463770
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact