In the context of Industry 4.0, Supply Chain Management (SCM) faces challenges in adopting advanced optimization techniques due to the “black-box” nature of most AI-based solutions, which causes reluctance among company stakeholders. To overcome this issue, in this work, we employ an Interpretable Artificial Intelligence (IAI) approach that combines evolutionary computation with Reinforcement Learning (RL) to generate interpretable decision-making policies in the form of decision trees. This IAI solution is embedded within a simulation-based optimization framework specifically designed to handle the inherent uncertainties and stochastic behaviors of modern supply chains. To our knowledge, this marks the first attempt to combine IAI with simulation-based optimization for decision-making in SCM. The methodology is tested on two supply chain optimization problems, one fictional and one from the real world, and its performance is compared against widely used optimization and RL algorithms....

In the context of Industry 4.0, Supply Chain Management (SCM) faces challenges in adopting advanced optimization techniques due to the “black-box” nature of most AI-based solutions, which causes reluctance among company stakeholders. To overcome this issue, in this work, we employ an Interpretable Artificial Intelligence (IAI) approach that combines evolutionary computation with Reinforcement Learning (RL) to generate interpretable decision-making policies in the form of decision trees. This IAI solution is embedded within a simulation-based optimization framework specifically designed to handle the inherent uncertainties and stochastic behaviors of modern supply chains. To our knowledge, this marks the first attempt to combine IAI with simulation-based optimization for decision-making in SCM. The methodology is tested on two supply chain optimization problems, one fictional and one from the real world, and its performance is compared against widely used optimization and RL algorithms. The results reveal that the interpretable approach delivers competitive, and sometimes better, performance, challenging the prevailing notion that there must be a trade-off between interpretability and optimization efficiency. Additionally, the developed framework demonstrates strong potential for industrial applications, offering seamless integration with various Python-based algorithms.

Evolutionary Reinforcement Learning for Interpretable Decision-Making in Supply Chain Management / Genetti, Stefano; Longobardi, Alberto; Iacca, Giovanni. - 15612:(2025), pp. 187-203. ( 28th European Conference on Applications of Evolutionary Computation, EvoApplications 2025, held as part of EvoStar 2025 Trieste 23rd April-25th April 2025) [10.1007/978-3-031-90062-4_12].

Evolutionary Reinforcement Learning for Interpretable Decision-Making in Supply Chain Management

Stefano Genetti;Giovanni Iacca
2025-01-01

Abstract

In the context of Industry 4.0, Supply Chain Management (SCM) faces challenges in adopting advanced optimization techniques due to the “black-box” nature of most AI-based solutions, which causes reluctance among company stakeholders. To overcome this issue, in this work, we employ an Interpretable Artificial Intelligence (IAI) approach that combines evolutionary computation with Reinforcement Learning (RL) to generate interpretable decision-making policies in the form of decision trees. This IAI solution is embedded within a simulation-based optimization framework specifically designed to handle the inherent uncertainties and stochastic behaviors of modern supply chains. To our knowledge, this marks the first attempt to combine IAI with simulation-based optimization for decision-making in SCM. The methodology is tested on two supply chain optimization problems, one fictional and one from the real world, and its performance is compared against widely used optimization and RL algorithms....
2025
Applications of Evolutionary Computation. EvoApplications 2025
Cham
Springer
978-3-031-90061-7
978-3-031-90062-4
Genetti, Stefano; Longobardi, Alberto; Iacca, Giovanni
Evolutionary Reinforcement Learning for Interpretable Decision-Making in Supply Chain Management / Genetti, Stefano; Longobardi, Alberto; Iacca, Giovanni. - 15612:(2025), pp. 187-203. ( 28th European Conference on Applications of Evolutionary Computation, EvoApplications 2025, held as part of EvoStar 2025 Trieste 23rd April-25th April 2025) [10.1007/978-3-031-90062-4_12].
File in questo prodotto:
File Dimensione Formato  
paper_13.pdf

embargo fino al 17/04/2026

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 772.37 kB
Formato Adobe PDF
772.37 kB Adobe PDF   Visualizza/Apri
Evolutionary Reinforcement Learning for Interpretable Decision-Making in Supply Chain Management.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/452213
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex 2
social impact