In this document we propose the use of a widely known learning-from-examples paradigm, namely the Support Vector Machines for Regression (SVRs), for system identification problems. We start off with the identification of a simple linear system taken from the literature, and proceed with the non-linear case as a second step.

Support Vector Machines for System Identification

Marconato, Anna;Gubian, Michele;Boni, Andrea;Petri, Dario
2007-01-01

Abstract

In this document we propose the use of a widely known learning-from-examples paradigm, namely the Support Vector Machines for Regression (SVRs), for system identification problems. We start off with the identification of a simple linear system taken from the literature, and proceed with the non-linear case as a second step.
2007
Trento
University of Trento. Department of information and communication technology
Marconato, Anna; Gubian, Michele; Boni, Andrea; Petri, Dario
File in questo prodotto:
File Dimensione Formato  
032.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 159.5 kB
Formato Adobe PDF
159.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/44582
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact