We consider a class of optimal control problems with control-affine dynamics and integral cost linear in the absolute value of the control. The Pontryagin extremals associated with such systems are given by (possible) concatenations of bang arcs with singular arcs and with inactivated arcs, that is, arcs where the control is identically zero. We focus on Pontryagin extremals of the form bang-inactive-bang. We use Hamiltonian methods to prove that the coercivity of a suitable second variation associated with the candidate extremal is sufficient to prove its strong-local optimality.

Optimality conditions for extremals containing bang and inactivated arcs / Chittaro, Francesca C.; Poggiolini, Laura. - (2017), p. 1975. (Intervento presentato al convegno CDC tenutosi a Melbourne, VIC, Australia nel 12th-15h December, 2017) [10.1109/CDC.2017.8263938].

Optimality conditions for extremals containing bang and inactivated arcs

Francesca C. Chittaro;Laura Poggiolini
2017-01-01

Abstract

We consider a class of optimal control problems with control-affine dynamics and integral cost linear in the absolute value of the control. The Pontryagin extremals associated with such systems are given by (possible) concatenations of bang arcs with singular arcs and with inactivated arcs, that is, arcs where the control is identically zero. We focus on Pontryagin extremals of the form bang-inactive-bang. We use Hamiltonian methods to prove that the coercivity of a suitable second variation associated with the candidate extremal is sufficient to prove its strong-local optimality.
2017
2017 IEEE 56th Annual Conference on Decision and Control (CDC)
New York
IEEE
978-1-5090-2873-3
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
Chittaro, Francesca C.; Poggiolini, Laura
Optimality conditions for extremals containing bang and inactivated arcs / Chittaro, Francesca C.; Poggiolini, Laura. - (2017), p. 1975. (Intervento presentato al convegno CDC tenutosi a Melbourne, VIC, Australia nel 12th-15h December, 2017) [10.1109/CDC.2017.8263938].
File in questo prodotto:
File Dimensione Formato  
cdc.2017.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 320.42 kB
Formato Adobe PDF
320.42 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/444230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact