This article presents a hybrid quantum-classical framework by incorporating quantum feature maps regulated classical Convolutional Neural Network (CNN) architecture in the context of detecting different subsurface targets in the radar sounder signal. The quantum feature maps are generated by quantum circuits to utilize spatially-bound input information from the input training samples. The associated spectral probabilistic amplitudes of the feature maps are further fed as an input to the classical CNN-based network to classify the subsurface targets in the radargram. Experimental results on the MCoRDS and MCoRDS3 dataset demonstrated the capability of contextualizing the classical architecture through quantum feature maps for characterizing the radar sounder data.

A CNN Architecture Tailored For Quantum Feature Map-Based Radar Sounder Signal Segmentation / Ghosh, Raktim; Delilbasic, Amer; Cavallaro, Gabriele; Bovolo, Francesca. - ELETTRONICO. - (2024), pp. 442-445. (Intervento presentato al convegno 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 tenutosi a grc nel 2024) [10.1109/igarss53475.2024.10642188].

A CNN Architecture Tailored For Quantum Feature Map-Based Radar Sounder Signal Segmentation

Ghosh, Raktim;Bovolo, Francesca
2024-01-01

Abstract

This article presents a hybrid quantum-classical framework by incorporating quantum feature maps regulated classical Convolutional Neural Network (CNN) architecture in the context of detecting different subsurface targets in the radar sounder signal. The quantum feature maps are generated by quantum circuits to utilize spatially-bound input information from the input training samples. The associated spectral probabilistic amplitudes of the feature maps are further fed as an input to the classical CNN-based network to classify the subsurface targets in the radargram. Experimental results on the MCoRDS and MCoRDS3 dataset demonstrated the capability of contextualizing the classical architecture through quantum feature maps for characterizing the radar sounder data.
2024
International Geoscience and Remote Sensing Symposium (IGARSS)
USA
Institute of Electrical and Electronics Engineers Inc.
Ghosh, Raktim; Delilbasic, Amer; Cavallaro, Gabriele; Bovolo, Francesca
A CNN Architecture Tailored For Quantum Feature Map-Based Radar Sounder Signal Segmentation / Ghosh, Raktim; Delilbasic, Amer; Cavallaro, Gabriele; Bovolo, Francesca. - ELETTRONICO. - (2024), pp. 442-445. (Intervento presentato al convegno 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 tenutosi a grc nel 2024) [10.1109/igarss53475.2024.10642188].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/444095
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact