Presently, pseudo-labeling stands as a prevailing approach in cross-domain semantic segmentation, enhancing model efficacy by training with pixels assigned with reliable pseudo-labels. However, we identify two key limitations within this paradigm: (1) under relatively severe domain shifts, most selected reliable pixels appear speckled and remain noisy. (2) when dealing with wild data, some pixels belonging to the open-set class may exhibit high confidence and also appear speckled. These two points make it difficult for the pixel-level selection mechanism to identify and correct these speckled close- and open-set noises. As a result, error accumulation is continuously introduced into subsequent self-training, leading to inefficiencies in pseudo-labeling. To address these limitations, we propose a novel method called Semantic Connectivity-driven Pseudo-labeling (SeCo). SeCo formulates pseudo-labels at the connectivity level, which makes it easier to locate and correct closed and open set...
Connectivity-Driven Pseudo-Labeling Makes Stronger Cross-Domain Segmenters / Zhao, Dong; Zang, Qi; Wang, Shuang; Sebe, Nicu; Zhong, Zhun. - 37:(2024). ( 38th Conference on Neural Information Processing Systems, NeurIPS 2024 Vancouver, Canada December 2024).
Connectivity-Driven Pseudo-Labeling Makes Stronger Cross-Domain Segmenters
Nicu Sebe;Zhun Zhong
2024-01-01
Abstract
Presently, pseudo-labeling stands as a prevailing approach in cross-domain semantic segmentation, enhancing model efficacy by training with pixels assigned with reliable pseudo-labels. However, we identify two key limitations within this paradigm: (1) under relatively severe domain shifts, most selected reliable pixels appear speckled and remain noisy. (2) when dealing with wild data, some pixels belonging to the open-set class may exhibit high confidence and also appear speckled. These two points make it difficult for the pixel-level selection mechanism to identify and correct these speckled close- and open-set noises. As a result, error accumulation is continuously introduced into subsequent self-training, leading to inefficiencies in pseudo-labeling. To address these limitations, we propose a novel method called Semantic Connectivity-driven Pseudo-labeling (SeCo). SeCo formulates pseudo-labels at the connectivity level, which makes it easier to locate and correct closed and open set...I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



