Reduction of gas turbines carbon emissions relies on a strategy for fueling the engines with pure or blended hydrogen. The major technical challenges to solve are i) the adjustments to the engine and in particular the combustion chamber and ii) a series of issues to solve to guarantee safe operations. In fact, compared to natural gas, hydrogen fueling implies higher risks of explosion in case of leak in the turbine enclosure and a more careful design of the ventilation system. Thus, a deeper comprehension of hydrogen leak scenarios is needed to adjust the safe design strategy of the enclosure. To this aim, a series of numerical investigations was carried out to understand how different methane-hydrogen blends (from pure methane to pure hydrogen) behave when leaking from a pipeline with fuel pressure that span from 1.5 to 4.5 MPa. The different fuel blends leaks in form of under-expanded jets were studied under different cross-flow ventilation conditions, with ventilation velocity spanning from 0 m/s to 5m/s. When compared to pure methane, the outcome is a three times longer penetration distance for pure hydrogen axisymmetric flammable clouds, whereas in cross-flow conditions a more complex three-dimensional behavior was found, potentially opening a safety-related concerns discussed in the manuscript.

Characterization of high-pressure hydrogen leakages / Cerbarano, D.; Lo Schiavo, E.; Tieghi, L.; Delibra, G.; Minotti, S.; Corsini, A.. - 2:(2023). (Intervento presentato al convegno ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023 tenutosi a Boston nel 26-30/06/2023) [10.1015/GT2023-101383].

Characterization of high-pressure hydrogen leakages

Tieghi L.;
2023-01-01

Abstract

Reduction of gas turbines carbon emissions relies on a strategy for fueling the engines with pure or blended hydrogen. The major technical challenges to solve are i) the adjustments to the engine and in particular the combustion chamber and ii) a series of issues to solve to guarantee safe operations. In fact, compared to natural gas, hydrogen fueling implies higher risks of explosion in case of leak in the turbine enclosure and a more careful design of the ventilation system. Thus, a deeper comprehension of hydrogen leak scenarios is needed to adjust the safe design strategy of the enclosure. To this aim, a series of numerical investigations was carried out to understand how different methane-hydrogen blends (from pure methane to pure hydrogen) behave when leaking from a pipeline with fuel pressure that span from 1.5 to 4.5 MPa. The different fuel blends leaks in form of under-expanded jets were studied under different cross-flow ventilation conditions, with ventilation velocity spanning from 0 m/s to 5m/s. When compared to pure methane, the outcome is a three times longer penetration distance for pure hydrogen axisymmetric flammable clouds, whereas in cross-flow conditions a more complex three-dimensional behavior was found, potentially opening a safety-related concerns discussed in the manuscript.
2023
Proceedings of the ASME Turbo Expo
Boston, USA
American Society of Mechanical Engineers (ASME)
9780791886946
Cerbarano, D.; Lo Schiavo, E.; Tieghi, L.; Delibra, G.; Minotti, S.; Corsini, A.
Characterization of high-pressure hydrogen leakages / Cerbarano, D.; Lo Schiavo, E.; Tieghi, L.; Delibra, G.; Minotti, S.; Corsini, A.. - 2:(2023). (Intervento presentato al convegno ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023 tenutosi a Boston nel 26-30/06/2023) [10.1015/GT2023-101383].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/439827
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact