This study explores the prediction of changes in Land Use and Land Cover (LULC) over the period of 2000 to 2040 in a region of Algeria. The research combines remote sensing data and machine learning techniques. Landsat image classification is applied to assess LULC changes for the years 2000 to 2020. In addition, a novel approach is employed to account for temporal factors influencing LULC changes in 2025, 2030, and 2040. Promising results are reported and discussed.

Machine Learning Approach to LULC Forecasting / Riche, Abdelkader; Ricci, Riccardo; Melgani, Farid; Drias, Ammar; Souissi, Boularbah. - (2024), pp. 59-63. ( 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, M2GARSS 2024 dza 2024) [10.1109/M2GARSS57310.2024.10537270].

Machine Learning Approach to LULC Forecasting

Riccardo Ricci;Farid Melgani;Boularbah Souissi
2024-01-01

Abstract

This study explores the prediction of changes in Land Use and Land Cover (LULC) over the period of 2000 to 2040 in a region of Algeria. The research combines remote sensing data and machine learning techniques. Landsat image classification is applied to assess LULC changes for the years 2000 to 2020. In addition, a novel approach is employed to account for temporal factors influencing LULC changes in 2025, 2030, and 2040. Promising results are reported and discussed.
2024
2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, M2GARSS 2024 - Proceedings
New York, USA
Institute of Electrical and Electronics Engineers Inc.
9798350358582
Riche, Abdelkader; Ricci, Riccardo; Melgani, Farid; Drias, Ammar; Souissi, Boularbah
Machine Learning Approach to LULC Forecasting / Riche, Abdelkader; Ricci, Riccardo; Melgani, Farid; Drias, Ammar; Souissi, Boularbah. - (2024), pp. 59-63. ( 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, M2GARSS 2024 dza 2024) [10.1109/M2GARSS57310.2024.10537270].
File in questo prodotto:
File Dimensione Formato  
2024-M2GARSS-Riche.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/437978
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact