In the task of pedestrian trajectory prediction, multi-modal prediction has recently emerged, demonstrating how a good model should predict multiple socially acceptable futures.With this respect, Normalizing Flows (NFs) have shown remarkable generative capabilities that make them particularly suitable for multi-modal trajectory prediction. By sampling from the learned distribution, NFs can produce multiple socially acceptable trajectories, each one paired with its corresponding likelihood score. Taking advantage of the multi-modal prediction coupled with the likelihood score, with MapFlow we introduce a solution based on NFs that improves the accuracy in prediction by incorporating in the model the social influence of neighboring pedestrians.

MAPFLOW: MULTI-AGENT PEDESTRIAN TRAJECTORY PREDICTION USING NORMALIZING FLOW / Stefani, A. L.; Bisagno, N.; Conci, N.. - 32:(2024), pp. 3295-3299. (Intervento presentato al convegno 49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 tenutosi a COEX, kor nel 2024) [10.1109/ICASSP48485.2024.10448062].

MAPFLOW: MULTI-AGENT PEDESTRIAN TRAJECTORY PREDICTION USING NORMALIZING FLOW

Stefani A. L.;Bisagno N.;Conci N.
2024-01-01

Abstract

In the task of pedestrian trajectory prediction, multi-modal prediction has recently emerged, demonstrating how a good model should predict multiple socially acceptable futures.With this respect, Normalizing Flows (NFs) have shown remarkable generative capabilities that make them particularly suitable for multi-modal trajectory prediction. By sampling from the learned distribution, NFs can produce multiple socially acceptable trajectories, each one paired with its corresponding likelihood score. Taking advantage of the multi-modal prediction coupled with the likelihood score, with MapFlow we introduce a solution based on NFs that improves the accuracy in prediction by incorporating in the model the social influence of neighboring pedestrians.
2024
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Piscataway, NJ
Institute of Electrical and Electronics Engineers Inc.
9798350344851
Stefani, A. L.; Bisagno, N.; Conci, N.
MAPFLOW: MULTI-AGENT PEDESTRIAN TRAJECTORY PREDICTION USING NORMALIZING FLOW / Stefani, A. L.; Bisagno, N.; Conci, N.. - 32:(2024), pp. 3295-3299. (Intervento presentato al convegno 49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 tenutosi a COEX, kor nel 2024) [10.1109/ICASSP48485.2024.10448062].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/436826
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact