Finite-dimensional observer-based controller design for PDEs is a challenging problem. Recently, such controllers were introduced for the 1D heat equation, under assumption that at least one of the observation or control operators is bounded. This paper suggests a constructive method for such controllers in the case where both the observation and control operators are unbounded. We consider boundary control of the 1D linear Kuramoto-Sivashinsky equation with in-domain point measurement. We employ a modal decomposition approach via dynamic extension, where we use the eigenfunctions of a Sturm-Liouville operator. The controller dimension is defined by the number of unstable modes, whereas the observer's dimension N may be larger than this number. We suggest a direct Lyapunov approach to the full-order closedloop system and provide LMIs for finding N and the resulting exponential decay rate. We prove that the LMIs are always feasible, provided N is large enough. A numerical example demonstrates the efficiency of the method and shows that the resulting LMIs are non-conservative.

Finite-dimensional control of the Kuramoto-Sivashinsky equation under point measurement and actuation / Katz, Rami; Fridman, E.. - 2020-:(2020), pp. 4423-4428. (Intervento presentato al convegno 59th IEEE Conference on Decision and Control, CDC 2020 tenutosi a kor nel 2020) [10.1109/CDC42340.2020.9304032].

Finite-dimensional control of the Kuramoto-Sivashinsky equation under point measurement and actuation

Katz, Rami;
2020-01-01

Abstract

Finite-dimensional observer-based controller design for PDEs is a challenging problem. Recently, such controllers were introduced for the 1D heat equation, under assumption that at least one of the observation or control operators is bounded. This paper suggests a constructive method for such controllers in the case where both the observation and control operators are unbounded. We consider boundary control of the 1D linear Kuramoto-Sivashinsky equation with in-domain point measurement. We employ a modal decomposition approach via dynamic extension, where we use the eigenfunctions of a Sturm-Liouville operator. The controller dimension is defined by the number of unstable modes, whereas the observer's dimension N may be larger than this number. We suggest a direct Lyapunov approach to the full-order closedloop system and provide LMIs for finding N and the resulting exponential decay rate. We prove that the LMIs are always feasible, provided N is large enough. A numerical example demonstrates the efficiency of the method and shows that the resulting LMIs are non-conservative.
2020
Proceedings of the IEEE Conference on Decision and Control
-
Institute of Electrical and Electronics Engineers Inc.
Katz, Rami; Fridman, E.
Finite-dimensional control of the Kuramoto-Sivashinsky equation under point measurement and actuation / Katz, Rami; Fridman, E.. - 2020-:(2020), pp. 4423-4428. (Intervento presentato al convegno 59th IEEE Conference on Decision and Control, CDC 2020 tenutosi a kor nel 2020) [10.1109/CDC42340.2020.9304032].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/436754
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact