This paper introduces a Bayesian data fusion methodology for monitoring bridge displacements, using a synergistic combination of satellite Interferometric Synthetic Aperture Radar (InSAR) and topographic measurements. Focused on the Belprato 2 Viaduct affected by a slow-moving landslide, this research highlights the advantages of integrating multiple data sources to surpass the limitations of individual monitoring techniques. The results demonstrate substantial improvements in the accuracy and temporal resolution of displacement measurements, highlighting the utility of data fusion in structural health monitoring of aging infrastructures.
Bayesian Data Fusion for Enhanced Monitoring of Bridge Displacements Using Satellite InSAR and Topographic Techniques / Tonelli, Daniel; Zini, Mattia; Simeoni, Lucia; Zorzi, Stefano; Rocca, Alfredo; Perissin, Daniele; Costa, Carlo; Quattrociocchi, David; Zonta, Daniele. - In: THE E-JOURNAL OF NONDESTRUCTIVE TESTING. - ISSN 1435-4934. - 29:7(2024), pp. 1-8. (Intervento presentato al convegno 11th European Workshop on Structural Health Monitoring, EWSHM 2024 tenutosi a Potsdam nel 10-13 June 2024) [10.58286/29688].
Bayesian Data Fusion for Enhanced Monitoring of Bridge Displacements Using Satellite InSAR and Topographic Techniques
Tonelli,Daniel;Simeoni,Lucia;Zorzi,Stefano;Zonta,Daniele
2024-01-01
Abstract
This paper introduces a Bayesian data fusion methodology for monitoring bridge displacements, using a synergistic combination of satellite Interferometric Synthetic Aperture Radar (InSAR) and topographic measurements. Focused on the Belprato 2 Viaduct affected by a slow-moving landslide, this research highlights the advantages of integrating multiple data sources to surpass the limitations of individual monitoring techniques. The results demonstrate substantial improvements in the accuracy and temporal resolution of displacement measurements, highlighting the utility of data fusion in structural health monitoring of aging infrastructures.File | Dimensione | Formato | |
---|---|---|---|
TonelliEtAl.2024_354_manuscript.pdf
accesso aperto
Descrizione: paper
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Creative commons
Dimensione
4.78 MB
Formato
Adobe PDF
|
4.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione