In this paper, we propose a new annotation scheme to classify different types of clauses in Terms-and-Conditions contracts with the ultimate goal of supporting legal experts to quickly identify and assess problematic issues in this type of legal documents. To this end, we built a small corpus of Terms-and-Conditions contracts and finalized an annotation scheme of 14 categories, eventually reaching an inter-annotator agreement of 0.92. Then, for 11 of them, we experimented with binary classification tasks using few-shot prompting with a multilingual T5 and two fine-tuned versions of two BERT-based LLMs for Italian. Our experiments showed the feasibility of automatic classification of our categories by reaching accuracies ranging from .79 to .95 on validation tasks.

Annotation and Classification of Relevant Clauses in Terms-and-Conditions Contracts / Bizzaro, Giovanni Pietro; Della Valentina, Elena; Napolitano, Maurizio; Mana, Nadia; Zancanaro, Massimo. - (2024), pp. 1209-1214. (Intervento presentato al convegno Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 tenutosi a Torino nel 20-25 Maggio) [10.48550/arXiv.2402.14457].

Annotation and Classification of Relevant Clauses in Terms-and-Conditions Contracts

Bizzaro, Giovanni Pietro
;
Napolitano, Maurizio;Mana, Nadia;Zancanaro, Massimo
2024-01-01

Abstract

In this paper, we propose a new annotation scheme to classify different types of clauses in Terms-and-Conditions contracts with the ultimate goal of supporting legal experts to quickly identify and assess problematic issues in this type of legal documents. To this end, we built a small corpus of Terms-and-Conditions contracts and finalized an annotation scheme of 14 categories, eventually reaching an inter-annotator agreement of 0.92. Then, for 11 of them, we experimented with binary classification tasks using few-shot prompting with a multilingual T5 and two fine-tuned versions of two BERT-based LLMs for Italian. Our experiments showed the feasibility of automatic classification of our categories by reaching accuracies ranging from .79 to .95 on validation tasks.
2024
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Torino
European Language Resources Association (ELRA)
978-2-493814-10-4
Bizzaro, Giovanni Pietro; Della Valentina, Elena; Napolitano, Maurizio; Mana, Nadia; Zancanaro, Massimo
Annotation and Classification of Relevant Clauses in Terms-and-Conditions Contracts / Bizzaro, Giovanni Pietro; Della Valentina, Elena; Napolitano, Maurizio; Mana, Nadia; Zancanaro, Massimo. - (2024), pp. 1209-1214. (Intervento presentato al convegno Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 tenutosi a Torino nel 20-25 Maggio) [10.48550/arXiv.2402.14457].
File in questo prodotto:
File Dimensione Formato  
2024.lrec-main.108.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 401.18 kB
Formato Adobe PDF
401.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/412651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact