In this paper we present a computational model which decodes the spatio-temporal data from electrophysiological measurements of neuronal networks and reconstructs the network structure on a macroscopic domain, representing the connectivity between neuronal units. The model is based on reservoir computing network (RCN) approach, where experimental data is used as training and validation data. Consequently, the model can be used to study the functionality of different neuronal cultures and simulate the network response to external stimuli.

Reservoir Computing Model For Multi-Electrode Electrophysiological Data Analysis / Auslender, Ilya; Pavesi, Lorenzo. - (2023), pp. 151-156. (Intervento presentato al convegno 20th IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2023 tenutosi a Eindhoven, NETHERLANDS nel 29-31 August 2023) [10.1109/cibcb56990.2023.10264895].

Reservoir Computing Model For Multi-Electrode Electrophysiological Data Analysis

Auslender, Ilya;Pavesi, Lorenzo
2023-01-01

Abstract

In this paper we present a computational model which decodes the spatio-temporal data from electrophysiological measurements of neuronal networks and reconstructs the network structure on a macroscopic domain, representing the connectivity between neuronal units. The model is based on reservoir computing network (RCN) approach, where experimental data is used as training and validation data. Consequently, the model can be used to study the functionality of different neuronal cultures and simulate the network response to external stimuli.
2023
2023 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, CIBCB
NEW YORK
IEEE
979-8-3503-1017-7
Auslender, Ilya; Pavesi, Lorenzo
Reservoir Computing Model For Multi-Electrode Electrophysiological Data Analysis / Auslender, Ilya; Pavesi, Lorenzo. - (2023), pp. 151-156. (Intervento presentato al convegno 20th IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2023 tenutosi a Eindhoven, NETHERLANDS nel 29-31 August 2023) [10.1109/cibcb56990.2023.10264895].
File in questo prodotto:
File Dimensione Formato  
Reservoir_Computing_Model_For_Multi-Electrode_Electrophysiological_Data_Analysis.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 802.14 kB
Formato Adobe PDF
802.14 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/411151
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact