In this note we present a unifying approach for two classes of first-order partial differential equations: we introduce the notion of Lagrangian representation in the settings of continuity equation and scalar conservation laws. This yields, on the one hand, the uniqueness of weak solutions to transport equation driven by a two-dimensional BV nearly incompressible vector field. On the other hand, it is proved that the entropy dissipation measure for scalar conservation laws in one space dimension is concentrated on countably many Lipschitz curves.

Lagrangian Representations for Linear and Nonlinear Transport / Bianchini, S.; Bonicatto, P.; Marconi, E.. - In: JOURNAL OF MATHEMATICAL SCIENCES. - ISSN 1072-3374. - 253:5(2021), pp. 642-659. (Intervento presentato al convegno Special semester at Harvard tenutosi a Boston, US nel April-May 2016) [10.1007/s10958-021-05259-9].

Lagrangian Representations for Linear and Nonlinear Transport

Bianchini S.;Bonicatto P.;
2021-01-01

Abstract

In this note we present a unifying approach for two classes of first-order partial differential equations: we introduce the notion of Lagrangian representation in the settings of continuity equation and scalar conservation laws. This yields, on the one hand, the uniqueness of weak solutions to transport equation driven by a two-dimensional BV nearly incompressible vector field. On the other hand, it is proved that the entropy dissipation measure for scalar conservation laws in one space dimension is concentrated on countably many Lipschitz curves.
2021
Journal of Mathematical Sciences
Boston
Springer
Bianchini, S.; Bonicatto, P.; Marconi, E.
Lagrangian Representations for Linear and Nonlinear Transport / Bianchini, S.; Bonicatto, P.; Marconi, E.. - In: JOURNAL OF MATHEMATICAL SCIENCES. - ISSN 1072-3374. - 253:5(2021), pp. 642-659. (Intervento presentato al convegno Special semester at Harvard tenutosi a Boston, US nel April-May 2016) [10.1007/s10958-021-05259-9].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/409791
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact