A partially unsupervised classification system for a regular updating of land-cover maps is proposed. The systems is composed of different partially unsupervised cascade classifiers integrated in the framework of a multiple classifier approach. The use of cascade classifiers allows one to exploit temporal correlation between multitemporal remote-sensing images to increase the accuracy and robustness of the partially unsupervised classification approach. Experimental results confirm the effectiveness of the proposed classification system.

A non-parametric classification system for a partially unsupervised updating of land-cover maps

Bruzzone, Lorenzo;
2001-01-01

Abstract

A partially unsupervised classification system for a regular updating of land-cover maps is proposed. The systems is composed of different partially unsupervised cascade classifiers integrated in the framework of a multiple classifier approach. The use of cascade classifiers allows one to exploit temporal correlation between multitemporal remote-sensing images to increase the accuracy and robustness of the partially unsupervised classification approach. Experimental results confirm the effectiveness of the proposed classification system.
2001
SPIE Conference on Image and Signal Processing for Remote Sensing VI
Berlino
SPIE
Bruzzone, Lorenzo; R., Cossu
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/40659
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact