Graphics Processing Units (GPUS) are today adopted in several domains for which reliability is fundamental, such as self-driving cars and autonomous machines. Unfortunately, on one side GPUS have been shown to have a high error rate and, on the other side, the constraints imposed by real-time safety-critical applications make traditional, costly, replication-based hardening solutions inadequate. This paper proposes an effective microarchitectural selective hardening of GPU modules to mitigate those faults that affect instructions correct execution. We first characterize, through Register-Transfer Level (RTL) fault injections, the architectural vulnerabilities of a GPU model (FlexGripPlus). We specifically target transient faults in the functional units and pipeline registers of a GPU core. Then, we apply selective hardening by triplicating the locations in each module that we found to be more critical. The results show that selective hardening using Triple Modular Redundancy (TMR) can correct 85% to 99% of faults in the pipeline registers and from 50% to 100% of faults in the functional units. The proposed selective TMR strategy reduces the hardware overhead by up to 65% when compared with traditional TMR.

Protecting GPU's Microarchitectural Vulnerabilities via Effective Selective Hardening / Condia, Josie E. Rodriguez; Rech, Paolo; dos Santos, Fernando Fernandes; Carrot, Luigi; Reorda, Matteo Sonza. - (2021), pp. 1-7. (Intervento presentato al convegno IOLTS 2021 tenutosi a Virtual Event nel 28th-30th June 2021) [10.1109/IOLTS52814.2021.9486703].

Protecting GPU's Microarchitectural Vulnerabilities via Effective Selective Hardening

Rech, Paolo
Secondo
;
2021-01-01

Abstract

Graphics Processing Units (GPUS) are today adopted in several domains for which reliability is fundamental, such as self-driving cars and autonomous machines. Unfortunately, on one side GPUS have been shown to have a high error rate and, on the other side, the constraints imposed by real-time safety-critical applications make traditional, costly, replication-based hardening solutions inadequate. This paper proposes an effective microarchitectural selective hardening of GPU modules to mitigate those faults that affect instructions correct execution. We first characterize, through Register-Transfer Level (RTL) fault injections, the architectural vulnerabilities of a GPU model (FlexGripPlus). We specifically target transient faults in the functional units and pipeline registers of a GPU core. Then, we apply selective hardening by triplicating the locations in each module that we found to be more critical. The results show that selective hardening using Triple Modular Redundancy (TMR) can correct 85% to 99% of faults in the pipeline registers and from 50% to 100% of faults in the functional units. The proposed selective TMR strategy reduces the hardware overhead by up to 65% when compared with traditional TMR.
2021
2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS) Proceedings
Piscataway, NJ
Institute of Electrical and Electronics Engineers Inc.
978-1-6654-3370-9
Condia, Josie E. Rodriguez; Rech, Paolo; dos Santos, Fernando Fernandes; Carrot, Luigi; Reorda, Matteo Sonza
Protecting GPU's Microarchitectural Vulnerabilities via Effective Selective Hardening / Condia, Josie E. Rodriguez; Rech, Paolo; dos Santos, Fernando Fernandes; Carrot, Luigi; Reorda, Matteo Sonza. - (2021), pp. 1-7. (Intervento presentato al convegno IOLTS 2021 tenutosi a Virtual Event nel 28th-30th June 2021) [10.1109/IOLTS52814.2021.9486703].
File in questo prodotto:
File Dimensione Formato  
Protecting_GPUs_Microarchitectural_Vulnerabilities_via_Effective_Selective_Hardening.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 954.86 kB
Formato Adobe PDF
954.86 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/403747
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact