By leveraging Interactional Sociology theories, multimodal behavioral features and recurrent neural architectures, we incrementally build computational models for trust analysis in multiparty human-robot interactions (HRI). We show that the model’s performance improves when i) modeling group dynamics with different granularities (i.e. group member, dyadic, and group as a whole), and ii) modeling users-robot interactions as a question-answer sequence.

Leveraging Interactional Sociology for Trust Analysis in Multiparty Human-Robot Interaction / Hulcelle, Marc; Hemamou, Léo; Varni, Giovanna; Rollet, Nicolas; Clavel, Chloé. - (2023), pp. 484-486. ( 11th Conference on Human-Agent Interaction, HAI 2023 Gothenburg, Sweden 4-7 December 2023) [10.1145/3623809.3623973].

Leveraging Interactional Sociology for Trust Analysis in Multiparty Human-Robot Interaction

Giovanna Varni;
2023-01-01

Abstract

By leveraging Interactional Sociology theories, multimodal behavioral features and recurrent neural architectures, we incrementally build computational models for trust analysis in multiparty human-robot interactions (HRI). We show that the model’s performance improves when i) modeling group dynamics with different granularities (i.e. group member, dyadic, and group as a whole), and ii) modeling users-robot interactions as a question-answer sequence.
2023
HAI '23: Proceedings of the 11th International Conference on Human-Agent Interaction
New York, NY, United States
Association for Computing Machinery
9798400708244
Hulcelle, Marc; Hemamou, Léo; Varni, Giovanna; Rollet, Nicolas; Clavel, Chloé
Leveraging Interactional Sociology for Trust Analysis in Multiparty Human-Robot Interaction / Hulcelle, Marc; Hemamou, Léo; Varni, Giovanna; Rollet, Nicolas; Clavel, Chloé. - (2023), pp. 484-486. ( 11th Conference on Human-Agent Interaction, HAI 2023 Gothenburg, Sweden 4-7 December 2023) [10.1145/3623809.3623973].
File in questo prodotto:
File Dimensione Formato  
3623809.3623973.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 480.49 kB
Formato Adobe PDF
480.49 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/400716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact