Following the deep brain stimulation (DBS) surgery, the stimulation parameters are manually tuned to reduce symptoms. This procedure can be timeconsuming, especially with directional leads. We propose an automated methodology to initialise contact configurations using imaging techniques. The goal is to maximise the electric field on the target while minimising the spillover, and the electric field on regions of avoidance. By superposing pre-computed electric fields, we solve the optimisation problem in less than a minute, much more efficient compared to finite element methods. Our method offers a robust and rapid solution, and it is expected to considerably reduce the time required for manual parameter tuning.

Initialisation of Deep Brain Stimulation Parameters with Multi-objective Optimisation Using Imaging Data / Baniasadi, Mehri; Husch, Andreas; Proverbio, Daniele; Fernandes Arroteia, Isabel; Hertel, Frank; Gonçalves, Jorge. - In: INFORMATIK AKTUELL. - ISSN 1431-472X. - (2022), pp. 297-302. (Intervento presentato al convegno Bildverarbeitung für die Medizin 2022 tenutosi a Heidelberg nel 26th–28th June 2022) [10.1007/978-3-658-36932-3_62].

Initialisation of Deep Brain Stimulation Parameters with Multi-objective Optimisation Using Imaging Data

Proverbio, Daniele;
2022-01-01

Abstract

Following the deep brain stimulation (DBS) surgery, the stimulation parameters are manually tuned to reduce symptoms. This procedure can be timeconsuming, especially with directional leads. We propose an automated methodology to initialise contact configurations using imaging techniques. The goal is to maximise the electric field on the target while minimising the spillover, and the electric field on regions of avoidance. By superposing pre-computed electric fields, we solve the optimisation problem in less than a minute, much more efficient compared to finite element methods. Our method offers a robust and rapid solution, and it is expected to considerably reduce the time required for manual parameter tuning.
2022
Bildverarbeitung für die Medizin 2022 Proceedings: German Workshop on Medical Image Computing
Wiesbaden, Germany
Springer Science and Business Media Deutschland GmbH
978-3-658-36931-6
978-3-658-36932-3
Baniasadi, Mehri; Husch, Andreas; Proverbio, Daniele; Fernandes Arroteia, Isabel; Hertel, Frank; Gonçalves, Jorge
Initialisation of Deep Brain Stimulation Parameters with Multi-objective Optimisation Using Imaging Data / Baniasadi, Mehri; Husch, Andreas; Proverbio, Daniele; Fernandes Arroteia, Isabel; Hertel, Frank; Gonçalves, Jorge. - In: INFORMATIK AKTUELL. - ISSN 1431-472X. - (2022), pp. 297-302. (Intervento presentato al convegno Bildverarbeitung für die Medizin 2022 tenutosi a Heidelberg nel 26th–28th June 2022) [10.1007/978-3-658-36932-3_62].
File in questo prodotto:
File Dimensione Formato  
BVM_conf_DBS-params.pdf

Open Access dal 06/04/2023

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri
2022_BVM_conf_DBS-params.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 484.6 kB
Formato Adobe PDF
484.6 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/397505
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact