Smartphones enable understanding human behavior with activity recognition to support people’s daily lives. Prior studies focused on using inertial sensors to detect simple activities (sitting, walking, running, etc.) and were mostly conducted in homogeneous populations within a country. However, people are more sedentary in the post-pandemic world with the prevalence of remote/hybrid work/study settings, making detecting simple activities less meaningful for context-aware applications. Hence, the understanding of (i) how multimodal smartphone sensors and machine learning models could be used to detect complex daily activities that can better inform about people’s daily lives, and (ii) how models generalize to unseen countries, is limited. We analyzed in-the-wild smartphone data and ∼ 216K self-reports from 637 college students in five countries (Italy, Mongolia, UK, Denmark, Paraguay). Then, we defined a 12-class complex daily activity recognition task and evaluated the performance with different approaches. We found that even though the generic multi-country approach provided an AUROC of 0.70, the country-specific approach performed better with AUROC scores in [0.79-0.89]. We believe that research along the lines of diversity awareness is fundamental for advancing human behavior understanding through smartphones and machine learning, for more real-world utility across countries.

Complex Daily Activities, Country-Level Diversity, and Smartphone Sensing: A Study in Denmark, Italy, Mongolia, Paraguay, and UK / Assi, K.; Meegahapola, L.; Droz, W.; Kun, P.; De Gotzen, A.; Bidoglia, M.; Stares, S.; Gaskell, G.; Chagnaa, A.; Ganbold, A.; Zundui, T.; Caprini, C.; Miorandi, D.; Zarza, J. L.; Hume, A.; Cernuzzi, L.; Bison, I.; Rodas Britez, M. D.; Busso, M.; Chenu-Abente, R.; Giunchiglia, F.; Gatica-Perez, D.. - (2023), pp. 1-23. (Intervento presentato al convegno CHI '23 tenutosi a Hamburg, Germany nel 23th-28th April 2023) [10.1145/3544548.3581190].

Complex Daily Activities, Country-Level Diversity, and Smartphone Sensing: A Study in Denmark, Italy, Mongolia, Paraguay, and UK

Caprini C.;Miorandi D.;Hume A.;Cernuzzi L.;Bison I.;Rodas Britez M. D.;Busso M.;Chenu-Abente R.;Giunchiglia F.;
2023-01-01

Abstract

Smartphones enable understanding human behavior with activity recognition to support people’s daily lives. Prior studies focused on using inertial sensors to detect simple activities (sitting, walking, running, etc.) and were mostly conducted in homogeneous populations within a country. However, people are more sedentary in the post-pandemic world with the prevalence of remote/hybrid work/study settings, making detecting simple activities less meaningful for context-aware applications. Hence, the understanding of (i) how multimodal smartphone sensors and machine learning models could be used to detect complex daily activities that can better inform about people’s daily lives, and (ii) how models generalize to unseen countries, is limited. We analyzed in-the-wild smartphone data and ∼ 216K self-reports from 637 college students in five countries (Italy, Mongolia, UK, Denmark, Paraguay). Then, we defined a 12-class complex daily activity recognition task and evaluated the performance with different approaches. We found that even though the generic multi-country approach provided an AUROC of 0.70, the country-specific approach performed better with AUROC scores in [0.79-0.89]. We believe that research along the lines of diversity awareness is fundamental for advancing human behavior understanding through smartphones and machine learning, for more real-world utility across countries.
2023
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
New York, NY, USA
Association for Computing Machinery
978-1-4503-9421-5
Assi, K.; Meegahapola, L.; Droz, W.; Kun, P.; De Gotzen, A.; Bidoglia, M.; Stares, S.; Gaskell, G.; Chagnaa, A.; Ganbold, A.; Zundui, T.; Caprini, C.;...espandi
Complex Daily Activities, Country-Level Diversity, and Smartphone Sensing: A Study in Denmark, Italy, Mongolia, Paraguay, and UK / Assi, K.; Meegahapola, L.; Droz, W.; Kun, P.; De Gotzen, A.; Bidoglia, M.; Stares, S.; Gaskell, G.; Chagnaa, A.; Ganbold, A.; Zundui, T.; Caprini, C.; Miorandi, D.; Zarza, J. L.; Hume, A.; Cernuzzi, L.; Bison, I.; Rodas Britez, M. D.; Busso, M.; Chenu-Abente, R.; Giunchiglia, F.; Gatica-Perez, D.. - (2023), pp. 1-23. (Intervento presentato al convegno CHI '23 tenutosi a Hamburg, Germany nel 23th-28th April 2023) [10.1145/3544548.3581190].
File in questo prodotto:
File Dimensione Formato  
2023 Complex Daily Activities pub.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/391389
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 6
social impact