We introduce a few extensions to the Hyperspherical Harmonics (HH) approach in order to include intrinsic excitations degrees of freedom. To this end we adapt the HH expansion method, usually built up starting from a fixed mass-weighted set of Jacobi coordinates, to the more general case where an arbitrary weighted set of coordinates is adopted. We provide a few results for 3- and 4-body bound state calculations.

Hyperspherical Harmonics Method with Particle Excitation Degrees of Freedom / Ferrari Ruffino, F.; Leidemann, W.; Orlandini, G.. - ELETTRONICO. - 238:(2020), pp. 821-825. (Intervento presentato al convegno FB22 tenutosi a Caen, Francia nel 8th July - 13th July 2018) [10.1007/978-3-030-32357-8_128].

Hyperspherical Harmonics Method with Particle Excitation Degrees of Freedom

Ferrari Ruffino F.
Primo
;
Leidemann W.
Secondo
;
Orlandini G.
Ultimo
2020-01-01

Abstract

We introduce a few extensions to the Hyperspherical Harmonics (HH) approach in order to include intrinsic excitations degrees of freedom. To this end we adapt the HH expansion method, usually built up starting from a fixed mass-weighted set of Jacobi coordinates, to the more general case where an arbitrary weighted set of coordinates is adopted. We provide a few results for 3- and 4-body bound state calculations.
2020
Recent Progress in Few-Body Physics: Proceedings of the 22nd International Conference on Few-Body Problems in Physics
CHAM, CH-6330, SWITZERLAND
SPRINGER INTERNATIONAL PUBLISHING AG
978-3-030-32356-1
978-3-030-32357-8
Ferrari Ruffino, F.; Leidemann, W.; Orlandini, G.
Hyperspherical Harmonics Method with Particle Excitation Degrees of Freedom / Ferrari Ruffino, F.; Leidemann, W.; Orlandini, G.. - ELETTRONICO. - 238:(2020), pp. 821-825. (Intervento presentato al convegno FB22 tenutosi a Caen, Francia nel 8th July - 13th July 2018) [10.1007/978-3-030-32357-8_128].
File in questo prodotto:
File Dimensione Formato  
proofs.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 310.09 kB
Formato Adobe PDF
310.09 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/381569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact