Deep learning algorithms have gained importance in astroparticle physics in the last years. They have been shown to outperform traditional strategies in particle identification, tracking and energy reconstruction. The attractive feature of these techniques is their ability to model large dimensionality inputs and catch non-trivial correlations among the variables, which could be hidden or not easy to model. This contribution focuses on the application of deep neural networks to the event reconstruction of the Limadou High-Energy Particle Detector on board of the China Seismo-Electromagnetic Satellite. We describe the model adopted for the neural network and report on the performance measured on simulated and real data.

Deep learning based event reconstruction for Limadou HEPD / Follega, F. M.; Cristoforetti, M.; Iuppa, R.; Bartocci, S.; Battiston, R.; Benotto, F.; Beole, S.; Burger, W. J.; Campana, D.; Castellini, G.; Cipollone, P.; Coli, S.; Conti, L.; Contin, A.; De Cilladi, L.; De Donato, C.; De Santis, C.; Gebbia, G.; Lolli, M.; Marcelli, N.; Martucci, M.; Masciantonio, G.; Merge, M.; Mese, M.; Neubuser, C.; Nozzoli, F.; Oliva, A.; Osteria, G.; Pacini, L.; Palma, F.; Palmonari, F.; Parmentier, A.; Perfetto, F.; Picozza, P.; Piersanti, M.; Pozzato, M.; Ricci, E.; Ricci, M.; Ricciarini, S. B.; Sahnoun, Z.; Scotti, V.; Sotgiu, A.; Sparvoli, R.; Vitale, V.; Zoffoli, S.; Zuccon, P.. - In: POS PROCEEDINGS OF SCIENCE. - ISSN 1824-8039. - 395:(2022). (Intervento presentato al convegno 37th International Cosmic Ray Conference, ICRC 2021 tenutosi a Hamburg nel 2021).

Deep learning based event reconstruction for Limadou HEPD

Follega F. M.;Cristoforetti M.;Iuppa R.;Battiston R.;Burger W. J.;Gebbia G.;Masciantonio G.;Neubuser C.;Nozzoli F.;Palma F.;Ricci E.;Zuccon P.
2022-01-01

Abstract

Deep learning algorithms have gained importance in astroparticle physics in the last years. They have been shown to outperform traditional strategies in particle identification, tracking and energy reconstruction. The attractive feature of these techniques is their ability to model large dimensionality inputs and catch non-trivial correlations among the variables, which could be hidden or not easy to model. This contribution focuses on the application of deep neural networks to the event reconstruction of the Limadou High-Energy Particle Detector on board of the China Seismo-Electromagnetic Satellite. We describe the model adopted for the neural network and report on the performance measured on simulated and real data.
2022
Proceedings of Science
Trieste
Sissa Medialab Srl
Follega, F. M.; Cristoforetti, M.; Iuppa, R.; Bartocci, S.; Battiston, R.; Benotto, F.; Beole, S.; Burger, W. J.; Campana, D.; Castellini, G.; Cipollo...espandi
Deep learning based event reconstruction for Limadou HEPD / Follega, F. M.; Cristoforetti, M.; Iuppa, R.; Bartocci, S.; Battiston, R.; Benotto, F.; Beole, S.; Burger, W. J.; Campana, D.; Castellini, G.; Cipollone, P.; Coli, S.; Conti, L.; Contin, A.; De Cilladi, L.; De Donato, C.; De Santis, C.; Gebbia, G.; Lolli, M.; Marcelli, N.; Martucci, M.; Masciantonio, G.; Merge, M.; Mese, M.; Neubuser, C.; Nozzoli, F.; Oliva, A.; Osteria, G.; Pacini, L.; Palma, F.; Palmonari, F.; Parmentier, A.; Perfetto, F.; Picozza, P.; Piersanti, M.; Pozzato, M.; Ricci, E.; Ricci, M.; Ricciarini, S. B.; Sahnoun, Z.; Scotti, V.; Sotgiu, A.; Sparvoli, R.; Vitale, V.; Zoffoli, S.; Zuccon, P.. - In: POS PROCEEDINGS OF SCIENCE. - ISSN 1824-8039. - 395:(2022). (Intervento presentato al convegno 37th International Cosmic Ray Conference, ICRC 2021 tenutosi a Hamburg nel 2021).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/379054
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact