Two new classes of processing elements based on a generalized Mach-Zehnder architecture are proposed for neural networks applications in integrated optics. Both new processing elements are demonstrated experimentally on a silicon photonic platform and analyzed theoretically boosting further the toolbox for photonic neural networks.

Integrated Silicon Photonics Processing Elements for Neural Networks and switching applications / Velha, Philippe. - (2020), pp. 1-2. (Intervento presentato al convegno 2020 IEEE Photonics Conference, IPC 2020 tenutosi a Vancouver, BC, Canada nel 28 September 2020 - 01 October 2020) [10.1109/IPC47351.2020.9252342].

Integrated Silicon Photonics Processing Elements for Neural Networks and switching applications

Velha, Philippe
Primo
2020-01-01

Abstract

Two new classes of processing elements based on a generalized Mach-Zehnder architecture are proposed for neural networks applications in integrated optics. Both new processing elements are demonstrated experimentally on a silicon photonic platform and analyzed theoretically boosting further the toolbox for photonic neural networks.
2020
2020 IEEE Photonics Conference (IPC)
Piscataway, NJ USA
IEEE
978-1-7281-5891-4
Velha, Philippe
Integrated Silicon Photonics Processing Elements for Neural Networks and switching applications / Velha, Philippe. - (2020), pp. 1-2. (Intervento presentato al convegno 2020 IEEE Photonics Conference, IPC 2020 tenutosi a Vancouver, BC, Canada nel 28 September 2020 - 01 October 2020) [10.1109/IPC47351.2020.9252342].
File in questo prodotto:
File Dimensione Formato  
Integrated_Silicon_Photonics_Processing_Elements_for_Neural_Networks_and_switching_applications.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 456.37 kB
Formato Adobe PDF
456.37 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/373098
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact