In this Chapter I introduce the idea of semantic automata—simple computational devices corresponding to basic quantifiers in natural language. In line with a procedural approach to semantics, given a quantified sentence and a finite model, a semantic automaton computes the truth-value of this sentence in that model. In order to build the semantic automata theory, I first show how to encode finite models as strings of symbols, translating between generalized quantifier theory and formal language theory. With the help of this encoding I show what kind of automata correspond to particular quantifiers. This leads to a number of characterization results, for instance, a classic theorem of Van Benthem establishing equivalence between quantifiers definable in first-order logic (e.g., ‘more than 5’) and quantifiers recognizable by finite-automata. Quantifier ‘most’, which is not definable in first-order logic, will require a recognition device with some sort of unbounded working memory, e.g., ...

Computing Simple Quantifiers / Szymanik, J.. - 96:(2016), pp. 41-49. [10.1007/978-3-319-28749-2_4]

Computing Simple Quantifiers

Szymanik, J.
2016-01-01

Abstract

In this Chapter I introduce the idea of semantic automata—simple computational devices corresponding to basic quantifiers in natural language. In line with a procedural approach to semantics, given a quantified sentence and a finite model, a semantic automaton computes the truth-value of this sentence in that model. In order to build the semantic automata theory, I first show how to encode finite models as strings of symbols, translating between generalized quantifier theory and formal language theory. With the help of this encoding I show what kind of automata correspond to particular quantifiers. This leads to a number of characterization results, for instance, a classic theorem of Van Benthem establishing equivalence between quantifiers definable in first-order logic (e.g., ‘more than 5’) and quantifiers recognizable by finite-automata. Quantifier ‘most’, which is not definable in first-order logic, will require a recognition device with some sort of unbounded working memory, e.g., ...
2016
Quantifiers and Cognition. Logical and Computational Perspectives
Switzerland
Springer
Szymanik, J.
Computing Simple Quantifiers / Szymanik, J.. - 96:(2016), pp. 41-49. [10.1007/978-3-319-28749-2_4]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/371742
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact