Natural language contains an abundance of reasoning patterns. Historically, there have been many attempts to capture their rational usage in normative systems of logical rules. However, empirical studies have repeatedly shown that human inference differs from what is characterized by logical validity. In order to better characterize the patterns of human reasoning, psychologists have proposed a number of theories of reasoning. In this paper, we combine logical and psychological perspectives on human reasoning. We develop a framework integrating Natural Logic and Mental Logic traditions. We model inference as a stochastic process where the reasoner arrives at a conclusion following a sequence of applications of inference steps (both logical rules and heuristic guesses). We estimate our model (i.e. assign weights to all possible inference rules) on a dataset of human syllogistic inference while treating the derivations as latent variables in our model. The computational model is accurate...

Toward probabilistic natural logic for syllogistic reasoning / Zhai, F.; Szymanik, J.; Titov, I.. - (2019), pp. 468-477. ( 20th Amsterdam Colloquium, AC 2015 Amsterdam 2015).

Toward probabilistic natural logic for syllogistic reasoning

Szymanik, J.;
2019-01-01

Abstract

Natural language contains an abundance of reasoning patterns. Historically, there have been many attempts to capture their rational usage in normative systems of logical rules. However, empirical studies have repeatedly shown that human inference differs from what is characterized by logical validity. In order to better characterize the patterns of human reasoning, psychologists have proposed a number of theories of reasoning. In this paper, we combine logical and psychological perspectives on human reasoning. We develop a framework integrating Natural Logic and Mental Logic traditions. We model inference as a stochastic process where the reasoner arrives at a conclusion following a sequence of applications of inference steps (both logical rules and heuristic guesses). We estimate our model (i.e. assign weights to all possible inference rules) on a dataset of human syllogistic inference while treating the derivations as latent variables in our model. The computational model is accurate...
2019
Proceedings of the 20th Amsterdam Colloquium
Amsterdam
Institute for Logic, Language and Computation, ILLC - University of Amsterdam
Zhai, F.; Szymanik, J.; Titov, I.
Toward probabilistic natural logic for syllogistic reasoning / Zhai, F.; Szymanik, J.; Titov, I.. - (2019), pp. 468-477. ( 20th Amsterdam Colloquium, AC 2015 Amsterdam 2015).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/371618
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact