QUESTEVAL is a reference-less metric used in text-to-text tasks, that compares the generated summaries directly to the source text, by automatically asking and answering questions. Its adaptation to Data-to-Text tasks is not straightforward as it requires multimodal Question Generation and Answering systems on the considered tasks, which are seldom available. To this purpose, we propose a method to build synthetic multimodal corpora enabling to train multimodal components for a data-QuestEval metric. The resulting metric is reference-less and multimodal; it obtains state-of-the-art correlations with human judgment on the WebNLG and WikiBio benchmarks. We make data-QUESTEVAL's code and models available for reproducibility purpose, as part of the QUESTEVAL project.

Data-QuestEval: A Reference-less Metric for Data-to-Text Semantic Evaluation / Rebuffel, Clement; Scialom, Thomas; Soulier, Laure; Piwowarski, Benjamin; Lamprier, Sylvain; Staiano, Jacopo; Scoutheeten, Geoffrey; Gallinari, Patrick. - (2021), pp. 8029-8036. (Intervento presentato al convegno EMNLP 2021 tenutosi a Punta Cana, Dominican Republic nel 7th-11th November 2021) [10.18653/v1/2021.emnlp-main.633].

Data-QuestEval: A Reference-less Metric for Data-to-Text Semantic Evaluation

Staiano, Jacopo;
2021-01-01

Abstract

QUESTEVAL is a reference-less metric used in text-to-text tasks, that compares the generated summaries directly to the source text, by automatically asking and answering questions. Its adaptation to Data-to-Text tasks is not straightforward as it requires multimodal Question Generation and Answering systems on the considered tasks, which are seldom available. To this purpose, we propose a method to build synthetic multimodal corpora enabling to train multimodal components for a data-QuestEval metric. The resulting metric is reference-less and multimodal; it obtains state-of-the-art correlations with human judgment on the WebNLG and WikiBio benchmarks. We make data-QUESTEVAL's code and models available for reproducibility purpose, as part of the QUESTEVAL project.
2021
2021 Conference on Empirical Methods in Natural Language Processing: Proceedings of the Conference
Stroudsburg, PA, USA
Association for Computational Linguistics (ACL)
978-1-955917-09-4
Rebuffel, Clement; Scialom, Thomas; Soulier, Laure; Piwowarski, Benjamin; Lamprier, Sylvain; Staiano, Jacopo; Scoutheeten, Geoffrey; Gallinari, Patric...espandi
Data-QuestEval: A Reference-less Metric for Data-to-Text Semantic Evaluation / Rebuffel, Clement; Scialom, Thomas; Soulier, Laure; Piwowarski, Benjamin; Lamprier, Sylvain; Staiano, Jacopo; Scoutheeten, Geoffrey; Gallinari, Patrick. - (2021), pp. 8029-8036. (Intervento presentato al convegno EMNLP 2021 tenutosi a Punta Cana, Dominican Republic nel 7th-11th November 2021) [10.18653/v1/2021.emnlp-main.633].
File in questo prodotto:
File Dimensione Formato  
2021.emnlp-main.633.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 399.77 kB
Formato Adobe PDF
399.77 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/362930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact