Predicting the secondary structure of a protein is a main topic in bioinformatics. A reliable predictor is needed by threading methods to improve the prediction of tertiary structure. Moreover, the predicted secondary structure content of a protein can be used to assign the protein to a specific folding class and thus estimate its function. We discuss here the use of support vector machines (SVMs) for the prediction of secondary structure. We show the results of a comparative experiment with a previously presented work. We measure the performances of SVMs on a significant non-redundant set of proteins. We present for the first time a direct comparison between SVMs and feed forward neural netwoks (NNs) for the task of secondary structure prediction. We exploit the use of bidirectional recurrent neural networks (BRNNs) as a filtering method to refine the predictions of the SVM classifier. Finally, we introduce a simple but effective idea to enforce constraints into secondary structure pr...

A combination of support vector machines and bidirectional recurrent neural networks for protein secondary structure prediction

Passerini, Andrea;
2003-01-01

Abstract

Predicting the secondary structure of a protein is a main topic in bioinformatics. A reliable predictor is needed by threading methods to improve the prediction of tertiary structure. Moreover, the predicted secondary structure content of a protein can be used to assign the protein to a specific folding class and thus estimate its function. We discuss here the use of support vector machines (SVMs) for the prediction of secondary structure. We show the results of a comparative experiment with a previously presented work. We measure the performances of SVMs on a significant non-redundant set of proteins. We present for the first time a direct comparison between SVMs and feed forward neural netwoks (NNs) for the task of secondary structure prediction. We exploit the use of bidirectional recurrent neural networks (BRNNs) as a filtering method to refine the predictions of the SVM classifier. Finally, we introduce a simple but effective idea to enforce constraints into secondary structure pr...
2003
Proceedings of the 8th Congress of the Italian Association for Artificial Intelligence
HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
Springer
9783540201199
A., Ceroni; P., Frasconi; Passerini, Andrea; A., Vullo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/36172
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact