This work addresses the issue of controlling a Reconfigurable Intelligent Surface (RIS) in real-time to maximize the network capacity. A RIS control strategy is proposed exploiting a Genetic Algorithm (GA) augmented with learning capabilities to achieve high computation efficiency and guarantee consistent network performance in highly-dynamic scenarios. The proposed strategy does not require knowledge of the channel between the RIS and the users, enabling the design of RIS without channel-sensing hardware. The proposed strategy is demonstrated in a small-scale numerical example.

Capacity-Oriented RIS Control Through a Genetic Algorithm with Learning Capability / Zardi, F.; Oliveri, G.; Rocca, P.; Massa, A.. - STAMPA. - (2022), pp. 69-70. (Intervento presentato al convegno 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI) tenutosi a Denver, Colorado, USA nel 10th-15th July 2022) [10.1109/AP-S/USNC-URSI47032.2022.9886649].

Capacity-Oriented RIS Control Through a Genetic Algorithm with Learning Capability

Zardi F.;Oliveri G.;Rocca P.;Massa A.
2022-01-01

Abstract

This work addresses the issue of controlling a Reconfigurable Intelligent Surface (RIS) in real-time to maximize the network capacity. A RIS control strategy is proposed exploiting a Genetic Algorithm (GA) augmented with learning capabilities to achieve high computation efficiency and guarantee consistent network performance in highly-dynamic scenarios. The proposed strategy does not require knowledge of the channel between the RIS and the users, enabling the design of RIS without channel-sensing hardware. The proposed strategy is demonstrated in a small-scale numerical example.
2022
2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Proceedings
Piscataway, NJ
Institute of Electrical and Electronics Engineers
978-1-6654-9658-2
Zardi, F.; Oliveri, G.; Rocca, P.; Massa, A.
Capacity-Oriented RIS Control Through a Genetic Algorithm with Learning Capability / Zardi, F.; Oliveri, G.; Rocca, P.; Massa, A.. - STAMPA. - (2022), pp. 69-70. (Intervento presentato al convegno 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI) tenutosi a Denver, Colorado, USA nel 10th-15th July 2022) [10.1109/AP-S/USNC-URSI47032.2022.9886649].
File in questo prodotto:
File Dimensione Formato  
Capacity-Oriented RIS Control Through a...pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 311.32 kB
Formato Adobe PDF
311.32 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/360485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact