The problem of the estimation of the directions-of-arrival (DoAs) in sub-arrayed planar arrays is addressed in this work by means of a strategy based on the Bayesian Compressive Sensing (BCS). The DoAs estimation performance for different sub-array configurations are discussed and compared, considering different noisy conditions. Preliminary numerical results are reported for single snapshot data to validate the proposed strategy.

A Compressive Sensing Approach for Directions-of-Arrival Estimation in Planar Sub-Arrayed Arrays / Hannan, Ma; Rocca, P. - (2022), pp. 01-03. (Intervento presentato al convegno 2022 16th European Conference on Antennas and Propagation (EuCAP) tenutosi a Madrid, Spain nel 27 March 2022 - 01 April 2022) [10.23919/EuCAP53622.2022.9769273].

A Compressive Sensing Approach for Directions-of-Arrival Estimation in Planar Sub-Arrayed Arrays

Hannan, MA;Rocca, P
2022-01-01

Abstract

The problem of the estimation of the directions-of-arrival (DoAs) in sub-arrayed planar arrays is addressed in this work by means of a strategy based on the Bayesian Compressive Sensing (BCS). The DoAs estimation performance for different sub-array configurations are discussed and compared, considering different noisy conditions. Preliminary numerical results are reported for single snapshot data to validate the proposed strategy.
2022
16th European Conference on Antennas and Propagation (EuCAP)
NEW YORK, NY USA
IEEE
978-88-31299-04-6
Hannan, Ma; Rocca, P
A Compressive Sensing Approach for Directions-of-Arrival Estimation in Planar Sub-Arrayed Arrays / Hannan, Ma; Rocca, P. - (2022), pp. 01-03. (Intervento presentato al convegno 2022 16th European Conference on Antennas and Propagation (EuCAP) tenutosi a Madrid, Spain nel 27 March 2022 - 01 April 2022) [10.23919/EuCAP53622.2022.9769273].
File in questo prodotto:
File Dimensione Formato  
A Compressive Sensing Approach for Dire...pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 383.11 kB
Formato Adobe PDF
383.11 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/360210
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact