Ultra-wideband (UWB) localization enables user tracking with high spatio-temporal resolution, whose exploitation for detecting higher-level mobility patterns is largely unexplored. We study whether i) existing detection techniques, developed for coarser-grained localization, apply also to UWB trajectories, and ii) the quantitative extent to which this enables finer-grained analyses. We focus on the well-known stop-move pattern, and offer a concrete use case of capturing visits in a real museum. We contribute a novel metric suited to the high UWB spatio-temporal resolution and use it to evaluate representative techniques. We deploy a UWB system in a 25 x15 m(2) museum area and base our analysis on 70000+ positions and 200+ ground-truth stops. These are very close in space and time, yet results confirm very accurate spatio-temporal estimation in the vast majority of cases.

Fine-grained Stop-Move Detection in UWB-based Trajectories / Hachem, F; Vecchia, D; Damiani, Ml; Picco, Gp. - (2022), pp. 111-118. (Intervento presentato al convegno 20th IEEE International Conference on Pervasive Computing and Communications, PerCom 2022 tenutosi a Pisa, Italy nel 21-25 March, 2022) [10.1109/PerCom53586.2022.9762404].

Fine-grained Stop-Move Detection in UWB-based Trajectories

Vecchia, D;Picco, GP
2022-01-01

Abstract

Ultra-wideband (UWB) localization enables user tracking with high spatio-temporal resolution, whose exploitation for detecting higher-level mobility patterns is largely unexplored. We study whether i) existing detection techniques, developed for coarser-grained localization, apply also to UWB trajectories, and ii) the quantitative extent to which this enables finer-grained analyses. We focus on the well-known stop-move pattern, and offer a concrete use case of capturing visits in a real museum. We contribute a novel metric suited to the high UWB spatio-temporal resolution and use it to evaluate representative techniques. We deploy a UWB system in a 25 x15 m(2) museum area and base our analysis on 70000+ positions and 200+ ground-truth stops. These are very close in space and time, yet results confirm very accurate spatio-temporal estimation in the vast majority of cases.
2022
Proceedings of the 2022 IEEE International Conference on Pervasive Computing and Communications (PerCom)
Piscataway, NJ USA
IEEE
978-1-6654-1643-6
Hachem, F; Vecchia, D; Damiani, Ml; Picco, Gp
Fine-grained Stop-Move Detection in UWB-based Trajectories / Hachem, F; Vecchia, D; Damiani, Ml; Picco, Gp. - (2022), pp. 111-118. (Intervento presentato al convegno 20th IEEE International Conference on Pervasive Computing and Communications, PerCom 2022 tenutosi a Pisa, Italy nel 21-25 March, 2022) [10.1109/PerCom53586.2022.9762404].
File in questo prodotto:
File Dimensione Formato  
percom22.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.76 MB
Formato Adobe PDF
5.76 MB Adobe PDF Visualizza/Apri
Fine-grained_Stop-Move_Detection_in_UWB-based_Trajectories.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 6.3 MB
Formato Adobe PDF
6.3 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/360206
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact