The complexity of the selection procedure of a genetic algorithm that requires reordering, if we restrict the class of the possible fitness functions to varying fitness functions, is O(N logN) where N is the size of the population. The Quantum Genetic Optimization Algorithm (QGOA) exploits the power of quantum computation in order to speed up genetic procedures. While the quantum and classical genetic algorithms use the same number of generations, the QGOA outperforms the classical one in identifying the high-fitness subpopulation at each generation. In QGOA the classical fitness evaluation and selection procedures are replaced by a single quantum procedure. We show that the complexity of our QGOA is O(1) in terms of number of oracle calls in the selection procedure. Such theoretical results are confirmed by the simulations of the algorithm.

Quantum Genetic Optimization / Malossini, Andrea; Blanzieri, Enrico; Calarco, Tommaso. - ELETTRONICO. - (2007), pp. 1-30.

Quantum Genetic Optimization

Malossini, Andrea;Blanzieri, Enrico;Calarco, Tommaso
2007-01-01

Abstract

The complexity of the selection procedure of a genetic algorithm that requires reordering, if we restrict the class of the possible fitness functions to varying fitness functions, is O(N logN) where N is the size of the population. The Quantum Genetic Optimization Algorithm (QGOA) exploits the power of quantum computation in order to speed up genetic procedures. While the quantum and classical genetic algorithms use the same number of generations, the QGOA outperforms the classical one in identifying the high-fitness subpopulation at each generation. In QGOA the classical fitness evaluation and selection procedures are replaced by a single quantum procedure. We show that the complexity of our QGOA is O(1) in terms of number of oracle calls in the selection procedure. Such theoretical results are confirmed by the simulations of the algorithm.
2007
Trento
University of Trento. Department of information and communication technology
Quantum Genetic Optimization / Malossini, Andrea; Blanzieri, Enrico; Calarco, Tommaso. - ELETTRONICO. - (2007), pp. 1-30.
Malossini, Andrea; Blanzieri, Enrico; Calarco, Tommaso
File in questo prodotto:
File Dimensione Formato  
019.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 308.07 kB
Formato Adobe PDF
308.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/359634
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact