In this paper, a classification approach for the real-time identification of “occupation” areas (instead of the detection of each subsurface object) in sub-surface sensing applications is applied. A suitable SVM-based strategy is developed for determining the probability of occurrence of buried targets and to define a “risk map” of the investigation domain. To assess the effectiveness of the proposed approach and to evaluate its robustness, selected numerical results related to a two-dimensional geometry are presented.

On The Use Of SVM For Electromagnetic Subsurface Sensing / Boni, Andrea; Massa, Andrea; Piffer, Stefano; Conci, Massimo. - ELETTRONICO. - (2011).

On The Use Of SVM For Electromagnetic Subsurface Sensing

Boni, Andrea
Primo
;
Massa, Andrea
Penultimo
;
Conci, Massimo
Secondo
2011-01-01

Abstract

In this paper, a classification approach for the real-time identification of “occupation” areas (instead of the detection of each subsurface object) in sub-surface sensing applications is applied. A suitable SVM-based strategy is developed for determining the probability of occurrence of buried targets and to define a “risk map” of the investigation domain. To assess the effectiveness of the proposed approach and to evaluate its robustness, selected numerical results related to a two-dimensional geometry are presented.
2011
Trento
Università degli Studi di Trento, Dipartimento di Ingegneria e Scienza dell'Informazione
On The Use Of SVM For Electromagnetic Subsurface Sensing / Boni, Andrea; Massa, Andrea; Piffer, Stefano; Conci, Massimo. - ELETTRONICO. - (2011).
Boni, Andrea; Massa, Andrea; Piffer, Stefano; Conci, Massimo
File in questo prodotto:
File Dimensione Formato  
DISI-11-278.C87.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 199.73 kB
Formato Adobe PDF
199.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/359378
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact