In this work we deal with the application of Support Vector Machines for Regression (SVRs) to the problem of identifying linear dynamic systems on the basis of a set of Input/Output samples. Three different examples of simple linear systems will be considered, taking into account both non-recursive and recursive models. When defining the SVR estimating function, several examples of kernels will be employed, with emphasis on the ones that may be more appropriate for describing linear models. As a further step, the exact parameters of the model will be directly estimated from the Support Vector values resulting from the SVR training phase.

SVMs for System Identification: The Linear Case / Marconato, Anna; Boni, Andrea; Schoukens, Johan; Petri, Dario. - ELETTRONICO. - (2008), pp. 1-8.

SVMs for System Identification: The Linear Case

Marconato, Anna;Boni, Andrea;Petri, Dario
2008-01-01

Abstract

In this work we deal with the application of Support Vector Machines for Regression (SVRs) to the problem of identifying linear dynamic systems on the basis of a set of Input/Output samples. Three different examples of simple linear systems will be considered, taking into account both non-recursive and recursive models. When defining the SVR estimating function, several examples of kernels will be employed, with emphasis on the ones that may be more appropriate for describing linear models. As a further step, the exact parameters of the model will be directly estimated from the Support Vector values resulting from the SVR training phase.
2008
Trento
University of Trento - Dipartimento di Ingegneria e Scienza dell'Informazione
SVMs for System Identification: The Linear Case / Marconato, Anna; Boni, Andrea; Schoukens, Johan; Petri, Dario. - ELETTRONICO. - (2008), pp. 1-8.
Marconato, Anna; Boni, Andrea; Schoukens, Johan; Petri, Dario
File in questo prodotto:
File Dimensione Formato  
043.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 255.21 kB
Formato Adobe PDF
255.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/359342
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact