The goal of our research is to provide techniques that can assess and validate the results of SVM-based analysis of microarray data. We present preliminary results of the effect of mislabeled training samples. We conducted several systematic experiments on artificial and real medical data using SVMs. We systematically flipped the labels of a fraction of the training data. We show that a relatively small number of mislabeled examples can dramatically decrease the performance as visualized on the ROC graphs. This phenomenon persists even if the dimensionality of the input space is drastically decreased, by using for example feature selection. Moreover we show that for SVM recursive feature elimination, even a small fraction of mislabeled samples can completely change the resulting set of genes. This work is an extended version of the previous paper [MBN04].

Assessment of SVM Reliability for Microarray Data Analysis / Malossini, Andrea; Blanzieri, Enrico; Ng, Raymond. - ELETTRONICO. - (2004), pp. 1-10.

Assessment of SVM Reliability for Microarray Data Analysis

Malossini, Andrea;Blanzieri, Enrico;Ng, Raymond
2004-01-01

Abstract

The goal of our research is to provide techniques that can assess and validate the results of SVM-based analysis of microarray data. We present preliminary results of the effect of mislabeled training samples. We conducted several systematic experiments on artificial and real medical data using SVMs. We systematically flipped the labels of a fraction of the training data. We show that a relatively small number of mislabeled examples can dramatically decrease the performance as visualized on the ROC graphs. This phenomenon persists even if the dimensionality of the input space is drastically decreased, by using for example feature selection. Moreover we show that for SVM recursive feature elimination, even a small fraction of mislabeled samples can completely change the resulting set of genes. This work is an extended version of the previous paper [MBN04].
2004
Trento
Università degli Studi di Trento - Dipartimento di Informatica e Telecomunicazioni
Assessment of SVM Reliability for Microarray Data Analysis / Malossini, Andrea; Blanzieri, Enrico; Ng, Raymond. - ELETTRONICO. - (2004), pp. 1-10.
Malossini, Andrea; Blanzieri, Enrico; Ng, Raymond
File in questo prodotto:
File Dimensione Formato  
svm_techrep.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 380.35 kB
Formato Adobe PDF
380.35 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/359208
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact