Understanding metadata written in natural language is a premise to successful automated integration of large scale language-rich datasets, such as digital libraries. In this paper we describe an analysis of the part of speech structure of two different datasets of metadata, show how this structure can be used to detect structural patterns that can be parsed by lightweight grammars with an accuracy ranging from 95.3% to 99.8%. This allows deeper understanding of metadata semantics, important for such tasks as translating classifications into lightweight ontologies for use in semantic matching.

Lightweight Parsing of Natural Language Metadata / Autayeu, Aliaksandr; Andrews, Pierre; Ju, Qi; Giunchiglia, Fausto. - ELETTRONICO. - (2009), pp. 1-5.

Lightweight Parsing of Natural Language Metadata

Autayeu, Aliaksandr;Andrews, Pierre;Ju, Qi;Giunchiglia, Fausto
2009-01-01

Abstract

Understanding metadata written in natural language is a premise to successful automated integration of large scale language-rich datasets, such as digital libraries. In this paper we describe an analysis of the part of speech structure of two different datasets of metadata, show how this structure can be used to detect structural patterns that can be parsed by lightweight grammars with an accuracy ranging from 95.3% to 99.8%. This allows deeper understanding of metadata semantics, important for such tasks as translating classifications into lightweight ontologies for use in semantic matching.
2009
Trento
University of Trento - Dipartimento di Ingegneria e Scienza dell'Informazione
Lightweight Parsing of Natural Language Metadata / Autayeu, Aliaksandr; Andrews, Pierre; Ju, Qi; Giunchiglia, Fausto. - ELETTRONICO. - (2009), pp. 1-5.
Autayeu, Aliaksandr; Andrews, Pierre; Ju, Qi; Giunchiglia, Fausto
File in questo prodotto:
File Dimensione Formato  
028.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 94.07 kB
Formato Adobe PDF
94.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/358692
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact