In this paper we deal with the use of multivariate normal mixture distributions to model asset returns, In particular, by modelling daily asset returns as a mixture of a low-volatility and a high-volatility distribution, we obtain three main results: (i) we can use posterior probabilities to identify hectic observations; (ii) we are able to compute a non-parametric fat-tails Value at Risk by sampling repeatedly from the mixture and computing the quantile of the empirical distribution; (iii) we can use the estimated parameters of the hectic distribution for stress testing purposes. We show how these three items can be addressed using either real data and simulation methods.

Mixture models for VaR and stress testing / Bee, Marco. - ELETTRONICO. - (2001), pp. 1-15.

Mixture models for VaR and stress testing

Bee, Marco
2001-01-01

Abstract

In this paper we deal with the use of multivariate normal mixture distributions to model asset returns, In particular, by modelling daily asset returns as a mixture of a low-volatility and a high-volatility distribution, we obtain three main results: (i) we can use posterior probabilities to identify hectic observations; (ii) we are able to compute a non-parametric fat-tails Value at Risk by sampling repeatedly from the mixture and computing the quantile of the empirical distribution; (iii) we can use the estimated parameters of the hectic distribution for stress testing purposes. We show how these three items can be addressed using either real data and simulation methods.
2001
Trento, Italia
Università degli Studi di Trento. Alea - Centro di ricerca sui rischi finanziari - Dipartimento di informatica e studi aziendali
Mixture models for VaR and stress testing / Bee, Marco. - ELETTRONICO. - (2001), pp. 1-15.
Bee, Marco
File in questo prodotto:
File Dimensione Formato  
bee2001.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 320.24 kB
Formato Adobe PDF
320.24 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/358645
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact