Let Cone(G), Int.Cone(G) and Lat(G) be the cone, the integer cone and the lattice of the incidence vectors of the circuits of graph G. A good range is a set K of natural numbers such that the intersection of Cone(G), Lat(G) and K^E is contained in Int.Cone(G) for every graph G=(V,E). We give a counterexample to a conjecture of Goddyn [ Goddyn, L.A.: Cones, Lattices and Hilbert Bases of Circuits and Perfect Matchings. Contemporary Mathematics 147, 419--439 (1993)] stating that N\{1} is a good range.
A note on range-restricted circuit covers / Rizzi, Romeo. - ELETTRONICO. - (1999), pp. 1-3.
A note on range-restricted circuit covers
Rizzi, Romeo
1999-01-01
Abstract
Let Cone(G), Int.Cone(G) and Lat(G) be the cone, the integer cone and the lattice of the incidence vectors of the circuits of graph G. A good range is a set K of natural numbers such that the intersection of Cone(G), Lat(G) and K^E is contained in Int.Cone(G) for every graph G=(V,E). We give a counterexample to a conjecture of Goddyn [ Goddyn, L.A.: Cones, Lattices and Hilbert Bases of Circuits and Perfect Matchings. Contemporary Mathematics 147, 419--439 (1993)] stating that N\{1} is a good range.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
tec56.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
228.32 kB
Formato
Adobe PDF
|
228.32 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione