We study a nonlinear partial differential equation of the calculus of variation in a bounded domain, perturbed by noise; we allow stochastic boundary conditions which depend on the time derivative of the solution on the boundary. This work provides the existence and uniqueness of the solution and it shows the existence of an ergodic invariant measure for the corresponding transition semigroup; further, under suitable additional assumptions, uniqueness and strong asymptotic stability of the invariant measure are proved.

A Variational Approach to Stochastic Nonlinear Diffusion Problems with Dynamical Boundary Conditions / Bonaccorsi, Stefano; Ziglio, Giacomo. - ELETTRONICO. - (2010), pp. 1-16.

A Variational Approach to Stochastic Nonlinear Diffusion Problems with Dynamical Boundary Conditions

Bonaccorsi, Stefano;Ziglio, Giacomo
2010-01-01

Abstract

We study a nonlinear partial differential equation of the calculus of variation in a bounded domain, perturbed by noise; we allow stochastic boundary conditions which depend on the time derivative of the solution on the boundary. This work provides the existence and uniqueness of the solution and it shows the existence of an ergodic invariant measure for the corresponding transition semigroup; further, under suitable additional assumptions, uniqueness and strong asymptotic stability of the invariant measure are proved.
2010
Trento
Università degli Studi di Trento
A Variational Approach to Stochastic Nonlinear Diffusion Problems with Dynamical Boundary Conditions / Bonaccorsi, Stefano; Ziglio, Giacomo. - ELETTRONICO. - (2010), pp. 1-16.
Bonaccorsi, Stefano; Ziglio, Giacomo
File in questo prodotto:
File Dimensione Formato  
preprint737.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 215.97 kB
Formato Adobe PDF
215.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/358390
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact