There is a huge amount of information scattered on the World Wide Web. As the information flow occurs at a high speed in the WWW, there is a need to organize it in the right manner so that a user can access it very easily. Previously the organization of information was generally done manually, by matching the document contents to some pre-defined categories. There are two approaches for this text-based categorization: manual and automatic. In the manual approach, a human expert performs the classification task, and in the second case supervised classifiers are used to automatically classify resources. In a supervised classification, manual interaction is required to create some training data before the automatic classification task takes place. In our new approach, we intend to propose automatic classification of documents through semantic keywords and building the formulas generation by these keywords. Thus we can reduce this human participation by combining the knowledge of a given classification and the knowledge extracted from the data. The main focus of this PhD thesis, supervised by Prof. Fausto Giunchiglia, is the automatic classification of documents into user-generated classifications. The key benefits foreseen from this automatic document classification is not only related to search engines, but also to many other fields like, document organization, text filtering, semantic index managing.
Towards the Automatic Classification of Documents in User-generated Classifications / Morshed, Ahsan-Ul. - ELETTRONICO. - (2006), pp. 1-14.
Towards the Automatic Classification of Documents in User-generated Classifications
Morshed, Ahsan-Ul
2006-01-01
Abstract
There is a huge amount of information scattered on the World Wide Web. As the information flow occurs at a high speed in the WWW, there is a need to organize it in the right manner so that a user can access it very easily. Previously the organization of information was generally done manually, by matching the document contents to some pre-defined categories. There are two approaches for this text-based categorization: manual and automatic. In the manual approach, a human expert performs the classification task, and in the second case supervised classifiers are used to automatically classify resources. In a supervised classification, manual interaction is required to create some training data before the automatic classification task takes place. In our new approach, we intend to propose automatic classification of documents through semantic keywords and building the formulas generation by these keywords. Thus we can reduce this human participation by combining the knowledge of a given classification and the knowledge extracted from the data. The main focus of this PhD thesis, supervised by Prof. Fausto Giunchiglia, is the automatic classification of documents into user-generated classifications. The key benefits foreseen from this automatic document classification is not only related to search engines, but also to many other fields like, document organization, text filtering, semantic index managing.File | Dimensione | Formato | |
---|---|---|---|
001.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
251.9 kB
Formato
Adobe PDF
|
251.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione