The paper represents a first attempt to formalize the get- specific document classification algorithm and to fully automate it through reasoning in a propositional concept language without requiring user involvement or a training dataset. We follow a knowledge-centric approach and convert a natural language hierarchical classification into a formal classification, where the labels are defined in the concept language. This allows us to encode the get-specific algorithm as a problem in the concept language. The reported experimental results provide evidence of practical applicability of the proposed approach.

Formalizing the Get-Specific Document Classification Algorithm / Giunchiglia, Fausto; Zaihrayeu, Ilya; Kharkevich, Uladzimir. - ELETTRONICO. - (2007), pp. 1-16.

Formalizing the Get-Specific Document Classification Algorithm

Giunchiglia, Fausto;Zaihrayeu, Ilya;Kharkevich, Uladzimir
2007-01-01

Abstract

The paper represents a first attempt to formalize the get- specific document classification algorithm and to fully automate it through reasoning in a propositional concept language without requiring user involvement or a training dataset. We follow a knowledge-centric approach and convert a natural language hierarchical classification into a formal classification, where the labels are defined in the concept language. This allows us to encode the get-specific algorithm as a problem in the concept language. The reported experimental results provide evidence of practical applicability of the proposed approach.
2007
Trento
Università degli Studi di Trento - Dipartimento di Informatica e Telecomunicazioni
Formalizing the Get-Specific Document Classification Algorithm / Giunchiglia, Fausto; Zaihrayeu, Ilya; Kharkevich, Uladzimir. - ELETTRONICO. - (2007), pp. 1-16.
Giunchiglia, Fausto; Zaihrayeu, Ilya; Kharkevich, Uladzimir
File in questo prodotto:
File Dimensione Formato  
013.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 253.93 kB
Formato Adobe PDF
253.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/358003
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact