In the contexts of automated reasoning and formal verification, important decision problems are effectively encoded into Satisfiability Modulo Theories (SMT). In the last decade efficient SMT solvers have been developed for several theories of practical interest (e.g., linear arithmetic, arrays, bit-vectors). Surprisingly, very few work has been done to extend SMT to deal with optimization problems; in particular, we are not aware of any work on SMT solvers able to produce solutions which minimize cost functions over arithmetical variables. This is unfortunate, since some problems of interest require this functionality. In this paper we start filling this gap. We present and discuss two general procedures for leveraging SMT to handle the minimization of LA(Q) cost functions, combining SMT with standard minimization techniques. We have implemented the procedures within the MathSAT SMT solver. Due to the absence of competitors in AR and SMT domains, we have experimentally evaluated our implementation against state-of-the-art tools for the domain of linear generalized disjunctive programming (LGDP), which is closest in spirit to our domain, on sets of problems which have been previously proposed as benchmarks for the latter tools. The results show that our tool is very competitive with, and often outperforms, these tools on these problems, clearly demonstrating the potential of the approach.

Optimization in SMT with LA(Q) Cost Functions / Sebastiani, Roberto; Tomasi, Silvia. - ELETTRONICO. - (2012), pp. 1-25.

Optimization in SMT with LA(Q) Cost Functions

Sebastiani, Roberto
Primo
;
Tomasi, Silvia
Ultimo
2012-01-01

Abstract

In the contexts of automated reasoning and formal verification, important decision problems are effectively encoded into Satisfiability Modulo Theories (SMT). In the last decade efficient SMT solvers have been developed for several theories of practical interest (e.g., linear arithmetic, arrays, bit-vectors). Surprisingly, very few work has been done to extend SMT to deal with optimization problems; in particular, we are not aware of any work on SMT solvers able to produce solutions which minimize cost functions over arithmetical variables. This is unfortunate, since some problems of interest require this functionality. In this paper we start filling this gap. We present and discuss two general procedures for leveraging SMT to handle the minimization of LA(Q) cost functions, combining SMT with standard minimization techniques. We have implemented the procedures within the MathSAT SMT solver. Due to the absence of competitors in AR and SMT domains, we have experimentally evaluated our implementation against state-of-the-art tools for the domain of linear generalized disjunctive programming (LGDP), which is closest in spirit to our domain, on sets of problems which have been previously proposed as benchmarks for the latter tools. The results show that our tool is very competitive with, and often outperforms, these tools on these problems, clearly demonstrating the potential of the approach.
2012
Trento
Università degli Studi di Trento, Dipartimento di Ingegneria e Scienza dell'Informazione
Optimization in SMT with LA(Q) Cost Functions / Sebastiani, Roberto; Tomasi, Silvia. - ELETTRONICO. - (2012), pp. 1-25.
Sebastiani, Roberto; Tomasi, Silvia
File in questo prodotto:
File Dimensione Formato  
techRep003.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 486.17 kB
Formato Adobe PDF
486.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/357925
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact