The time-harmonic eddy current problem with either voltage or current intensity excitation is considered. We propose and analyze a new finite element approximation of the problem, based on a weak formulation where the main unknowns are the electric field in the conductor, a scalar magnetic potential in the insulator and, for the voltage excitation problem, the current intensity. The finite element approximation uses edge elements for the electric field and nodal elements for the scalar magnetic potential, and an optimal error estimate is proved. Some numerical results illustrating the performance of the method are also presented.

A Formulation of the Eddy-Current Problem in the Presence of Electric Ports / Alonso Rodriguez, Ana; Vazquez Hernandez, Rafael; Valli, Alberto. - ELETTRONICO. - (2008), pp. 1-20.

A Formulation of the Eddy-Current Problem in the Presence of Electric Ports

Alonso Rodriguez, Ana;Valli, Alberto
2008-01-01

Abstract

The time-harmonic eddy current problem with either voltage or current intensity excitation is considered. We propose and analyze a new finite element approximation of the problem, based on a weak formulation where the main unknowns are the electric field in the conductor, a scalar magnetic potential in the insulator and, for the voltage excitation problem, the current intensity. The finite element approximation uses edge elements for the electric field and nodal elements for the scalar magnetic potential, and an optimal error estimate is proved. Some numerical results illustrating the performance of the method are also presented.
2008
Trento
Università degli Studi di Trento
A Formulation of the Eddy-Current Problem in the Presence of Electric Ports / Alonso Rodriguez, Ana; Vazquez Hernandez, Rafael; Valli, Alberto. - ELETTRONICO. - (2008), pp. 1-20.
Alonso Rodriguez, Ana; Vazquez Hernandez, Rafael; Valli, Alberto
File in questo prodotto:
File Dimensione Formato  
UTM720.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 299.1 kB
Formato Adobe PDF
299.1 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/357848
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact