We propose an unsupervised methodology for multi-class change detection (CD) in multimodal remote sensing data fused using the Kronecker product formalism. The method utilizes the compressed change vector analysis (C2VA) on the fully vectorized change matrices. The multimodal case is demonstrated using dual-frequency full-polarimetric Synthetic Aperture Radar (SAR) data obtained by EMISAR over the Foulum agricultural area. The change types are investigated using ground truth data for the growth of various crops. The work showcases the capability of the Kronecker product-based CD formalism beyond conventional scalar change indices.

Unsupervised Multiclass Change Detection for Multimodal Remote Sensing Data / Chirakkal, Sanid; Bovolo, Francesca; Misra, Arundhati; Bruzzone, Lorenzo; Bhattacharya, Avik. - ELETTRONICO. - (2022), pp. 3223-3226. (Intervento presentato al convegno IEEE International Geoscience and Remote Sensing Symposium tenutosi a Kuala Lumpur, Malaysia nel 17-22 July 2022) [10.1109/IGARSS46834.2022.9883211].

Unsupervised Multiclass Change Detection for Multimodal Remote Sensing Data

Bovolo, Francesca;Bruzzone, Lorenzo;
2022-01-01

Abstract

We propose an unsupervised methodology for multi-class change detection (CD) in multimodal remote sensing data fused using the Kronecker product formalism. The method utilizes the compressed change vector analysis (C2VA) on the fully vectorized change matrices. The multimodal case is demonstrated using dual-frequency full-polarimetric Synthetic Aperture Radar (SAR) data obtained by EMISAR over the Foulum agricultural area. The change types are investigated using ground truth data for the growth of various crops. The work showcases the capability of the Kronecker product-based CD formalism beyond conventional scalar change indices.
2022
IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
New York
IEEE
978-1-6654-2792-0
Chirakkal, Sanid; Bovolo, Francesca; Misra, Arundhati; Bruzzone, Lorenzo; Bhattacharya, Avik
Unsupervised Multiclass Change Detection for Multimodal Remote Sensing Data / Chirakkal, Sanid; Bovolo, Francesca; Misra, Arundhati; Bruzzone, Lorenzo; Bhattacharya, Avik. - ELETTRONICO. - (2022), pp. 3223-3226. (Intervento presentato al convegno IEEE International Geoscience and Remote Sensing Symposium tenutosi a Kuala Lumpur, Malaysia nel 17-22 July 2022) [10.1109/IGARSS46834.2022.9883211].
File in questo prodotto:
File Dimensione Formato  
Unsupervised_Multiclass_Change_Detection_for_Multimodal_Remote_Sensing_Data (1)_compressed.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 293.56 kB
Formato Adobe PDF
293.56 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/354892
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact