We propose an unsupervised methodology for multi-class change detection (CD) in multimodal remote sensing data fused using the Kronecker product formalism. The method utilizes the compressed change vector analysis (C2VA) on the fully vectorized change matrices. The multimodal case is demonstrated using dual-frequency full-polarimetric Synthetic Aperture Radar (SAR) data obtained by EMISAR over the Foulum agricultural area. The change types are investigated using ground truth data for the growth of various crops. The work showcases the capability of the Kronecker product-based CD formalism beyond conventional scalar change indices.
Unsupervised Multiclass Change Detection for Multimodal Remote Sensing Data / Chirakkal, Sanid; Bovolo, Francesca; Misra, Arundhati; Bruzzone, Lorenzo; Bhattacharya, Avik. - ELETTRONICO. - (2022), pp. 3223-3226. (Intervento presentato al convegno IEEE International Geoscience and Remote Sensing Symposium tenutosi a Kuala Lumpur, Malaysia nel 17-22 July 2022) [10.1109/IGARSS46834.2022.9883211].
Unsupervised Multiclass Change Detection for Multimodal Remote Sensing Data
Bovolo, Francesca;Bruzzone, Lorenzo;
2022-01-01
Abstract
We propose an unsupervised methodology for multi-class change detection (CD) in multimodal remote sensing data fused using the Kronecker product formalism. The method utilizes the compressed change vector analysis (C2VA) on the fully vectorized change matrices. The multimodal case is demonstrated using dual-frequency full-polarimetric Synthetic Aperture Radar (SAR) data obtained by EMISAR over the Foulum agricultural area. The change types are investigated using ground truth data for the growth of various crops. The work showcases the capability of the Kronecker product-based CD formalism beyond conventional scalar change indices.File | Dimensione | Formato | |
---|---|---|---|
Unsupervised_Multiclass_Change_Detection_for_Multimodal_Remote_Sensing_Data (1)_compressed.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
293.56 kB
Formato
Adobe PDF
|
293.56 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione