In this paper we provide the first evidence that daily happiness of individuals can be automatically recognized using an extensive set of indicators obtained from the mobile phone usage data (call log, sms and Bluetooth proximity data) and “background noise” indicators coming from the weather factor and personality traits. Our final machine learning model, based on the Random Forest classifier, obtains an accuracy score of 80.81% for a 3-class daily happiness recognition problem. Moreover, we identify and discuss the indicators, which have strong predictive power in the source and the feature spaces, discuss different approaches, machine learning models and provide an insight for future research.
Titolo: | Happiness Recognition from Mobile Phone Data |
Autori: | Bogomolov, Andrey; Lepri, Bruno; Pianesi, Fabio |
Autori Unitn: | |
Titolo del volume contenente il saggio: | International Conference on Social Computing |
Luogo di edizione: | Washington |
Casa editrice: | ASE/IEEE |
Anno di pubblicazione: | 2013 |
Handle: | http://hdl.handle.net/11572/34510 |
Appare nelle tipologie: | 04.1 Saggio in atti di convegno (Paper in proceedings) |