The proceedings contain 33 papers. The topics discussed include: stereo matching of remote sensing images using deep stereo matching; object detection with noisy annotations in high-resolution remote sensing images using robust EfficientDet; few shot object detection in remote sensing images; fire segmentation using a squeezesegv2; deep-learning-based remote sensing video super-resolution for Jilin-1 satellite; useable machine learning for Sentinel-2 multispectral satellite imagery; self-supervised multi-task learning for semantic segmentation of urban scenes; impact of different compression rates for hyperspectral data compression based on a convolutional autoencoder; and hyperspectral image classification using spectral-spatial hypergraph convolution neural network.

Image and Signal Processing for Remote Sensing XXVII / Bruzzone, L.; Bovolo, F.. - STAMPA. - 11862:(2021).

Image and Signal Processing for Remote Sensing XXVII

L. Bruzzone;F. Bovolo
2021-01-01

Abstract

The proceedings contain 33 papers. The topics discussed include: stereo matching of remote sensing images using deep stereo matching; object detection with noisy annotations in high-resolution remote sensing images using robust EfficientDet; few shot object detection in remote sensing images; fire segmentation using a squeezesegv2; deep-learning-based remote sensing video super-resolution for Jilin-1 satellite; useable machine learning for Sentinel-2 multispectral satellite imagery; self-supervised multi-task learning for semantic segmentation of urban scenes; impact of different compression rates for hyperspectral data compression based on a convolutional autoencoder; and hyperspectral image classification using spectral-spatial hypergraph convolution neural network.
2021
Bellingham, WA, USA
SPIE
9781510645684
Image and Signal Processing for Remote Sensing XXVII / Bruzzone, L.; Bovolo, F.. - STAMPA. - 11862:(2021).
Bruzzone, L.; Bovolo, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/337246
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact