The proceedings contain 45 papers. The topics discussed include: automatic extraction and change monitoring of fire disaster event based on high-resolution nighttime light remote sensing images; a comparison on the use of different satellite multispectral data for the prediction of aboveground biomass; infrastructure monitoring using SAR and multispectral multitemporal images; infrastructure monitoring using SAR and multispectral multi-temporal images; exploring the MSER-based hyperspectral remote sensing image registration; change detection in UWB VHF SAR images exploiting flight heading diversity through robust principal component analysis; impact of a spatial decorrelation of the noise on the estimation accuracy of temporal changes in the scene from a couple of single-look SAR images; an approach to improve detection in scenes with varying object densities in remote sensing; and detection of oil wells based on faster R-CNN in optical satellite remote sensing images.

Image and Signal Processing for Remote Sensing XXVI / Bruzzone, L.; Bovolo, F.; Santi, E.. - STAMPA. - 11533:(2020).

Image and Signal Processing for Remote Sensing XXVI

L. Bruzzone;F. Bovolo;
2020-01-01

Abstract

The proceedings contain 45 papers. The topics discussed include: automatic extraction and change monitoring of fire disaster event based on high-resolution nighttime light remote sensing images; a comparison on the use of different satellite multispectral data for the prediction of aboveground biomass; infrastructure monitoring using SAR and multispectral multitemporal images; infrastructure monitoring using SAR and multispectral multi-temporal images; exploring the MSER-based hyperspectral remote sensing image registration; change detection in UWB VHF SAR images exploiting flight heading diversity through robust principal component analysis; impact of a spatial decorrelation of the noise on the estimation accuracy of temporal changes in the scene from a couple of single-look SAR images; an approach to improve detection in scenes with varying object densities in remote sensing; and detection of oil wells based on faster R-CNN in optical satellite remote sensing images.
2020
Bellingham, WA, USA
SPIE
9781510638792
Image and Signal Processing for Remote Sensing XXVI / Bruzzone, L.; Bovolo, F.; Santi, E.. - STAMPA. - 11533:(2020).
Bruzzone, L.; Bovolo, F.; Santi, E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/337239
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact